메뉴 건너뛰기




Volumn 17, Issue 4, 2013, Pages 488-497

Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease

Author keywords

Diabetes; EMT; EndMT; MicroRNAs; Transforming growth factor

Indexed keywords

ADAPTOR PROTEIN; ADVANCED GLYCATION END PRODUCT; ALPHA SMOOTH MUSCLE ACTIN; ANGIOTENSIN II; BONE MORPHOGENETIC PROTEIN 2; BONE MORPHOGENETIC PROTEIN 4; CALVASCULIN; CD31 ANTIGEN; CONNECTIVE TISSUE GROWTH FACTOR; FIBROBLAST GROWTH FACTOR 2; MICRORNA; MICRORNA 125B; MICRORNA 138; MICRORNA 148A; MICRORNA 200A; MICRORNA 200B; MICRORNA 21; MICRORNA 23; MICRORNA 23A; MICRORNA 23B; MICRORNA LET7B; MICRORNA LET7C; MICRORNA LET7D; OSTEOGENIC PROTEIN 1; PLATELET DERIVED GROWTH FACTOR; PROTEIN NCK2; SMAD PROTEIN; TRANSFORMING GROWTH FACTOR BETA1; TRANSFORMING GROWTH FACTOR BETA2; UNCLASSIFIED DRUG;

EID: 84883296447     PISSN: 13421751     EISSN: 14377799     Source Type: Journal    
DOI: 10.1007/s10157-013-0781-0     Document Type: Review
Times cited : (157)

References (87)
  • 1
    • 35848968871 scopus 로고    scopus 로고
    • Prevalence of chronic kidney disease in the United States
    • 10.1001/jama.298.17.2038 1:CAS:528:DC%2BD2sXht1yjsLnM
    • Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA, J Am Med Assoc. 2007;298:2038-47.
    • (2007) JAMA, J Am Med Assoc , vol.298 , pp. 2038-2047
    • Coresh, J.1    Selvin, E.2    Stevens, L.A.3
  • 2
    • 38549159026 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of fibrosis
    • 18161745 10.1002/path.2277 1:CAS:528:DC%2BD1cXhvFCkt7w%3D
    • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199-210.
    • (2008) J Pathol , vol.214 , pp. 199-210
    • Wynn, T.A.1
  • 3
    • 79951762325 scopus 로고    scopus 로고
    • Renal fibrosis
    • 21189948 10.3345/kjp.2010.53.7.735
    • Cho MH. Renal fibrosis. Korean J Pediatr. 2010;53:735-40.
    • (2010) Korean J Pediatr , vol.53 , pp. 735-740
    • Cho, M.H.1
  • 5
    • 77957729712 scopus 로고    scopus 로고
    • The origin of fibroblasts and mechanism of cardiac fibrosis
    • 20635395 10.1002/jcp.22322 1:CAS:528:DC%2BC3cXhtFGqsLzF
    • Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631-7.
    • (2010) J Cell Physiol , vol.225 , pp. 631-637
    • Krenning, G.1    Zeisberg, E.M.2    Kalluri, R.3
  • 6
    • 79551479332 scopus 로고    scopus 로고
    • Renal interstitial fibrosis: A critical evaluation of the origin of myofibroblasts
    • 21252512 10.1159/000313946 1:CAS:528:DC%2BC3MXhtFWlsb7E
    • Barnes JL, Glass WF 2nd. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib Nephrol. 2011;169:73-93.
    • (2011) Contrib Nephrol , vol.169 , pp. 73-93
    • Barnes, J.L.1    Glass II, W.F.2
  • 7
    • 80053394522 scopus 로고    scopus 로고
    • Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice
    • 21911936 10.1172/JCI57301 1:CAS:528:DC%2BC3MXht12ht7nK
    • Asada N, Takase M, Nakamura J, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Investig. 2011;121:3981-90.
    • (2011) J Clin Investig , vol.121 , pp. 3981-3990
    • Asada, N.1    Takase, M.2    Nakamura, J.3
  • 8
    • 80052851503 scopus 로고    scopus 로고
    • Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders
    • 21763673 10.1016/j.ajpath.2011.06.001 1:CAS:528:DC%2BC3MXhtF2jsLvN
    • Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074-80.
    • (2011) Am J Pathol , vol.179 , pp. 1074-1080
    • Piera-Velazquez, S.1    Li, Z.2    Jimenez, S.A.3
  • 9
    • 0016590595 scopus 로고
    • Structural analysis of endocardial cytodifferentiation
    • Markwald RR, Fizharris TP, Smith WN. Structural analysis of endocardial cytodifferentiation. Dev Biol. 1975; p. 160-80.
    • (1975) Dev Biol. , pp. 160-180
    • Markwald, R.R.1    Fizharris, T.P.2    Smith, W.N.3
  • 10
    • 34250695906 scopus 로고    scopus 로고
    • Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart
    • 17587820 10.1159/000101315 1:CAS:528:DC%2BD2sXmvFSnurY%3D
    • Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007;185:146-56.
    • (2007) Cells Tissues Organs , vol.185 , pp. 146-156
    • Mercado-Pimentel, M.E.1    Runyan, R.B.2
  • 11
    • 0035865048 scopus 로고    scopus 로고
    • Tie2-Cre transgenic mice: A new model for endothelial cell-lineage analysis in vivo
    • 11161575 10.1006/dbio.2000.0106 1:CAS:528:DC%2BD3MXnsV2qsw%3D%3D
    • Kisanuki YY, Hammer RE, Miyazaki J, et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230:230-42.
    • (2001) Dev Biol , vol.230 , pp. 230-242
    • Kisanuki, Y.Y.1    Hammer, R.E.2    Miyazaki, J.3
  • 12
    • 80054976356 scopus 로고    scopus 로고
    • Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis
    • 21945322 10.1016/j.ajpath.2011.07.042 1:CAS:528:DC%2BC3MXhsFCmu7nK
    • Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660-73.
    • (2011) Am J Pathol , vol.179 , pp. 2660-2673
    • Rieder, F.1    Kessler, S.P.2    West, G.A.3
  • 13
    • 55249103431 scopus 로고    scopus 로고
    • Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
    • 10.1681/ASN.2008050513
    • Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol JASN. 2008;19:2282-7.
    • (2008) J Am Soc Nephrol JASN , vol.19 , pp. 2282-2287
    • Zeisberg, E.M.1    Potenta, S.E.2    Sugimoto, H.3
  • 14
    • 73549092294 scopus 로고    scopus 로고
    • Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
    • 19729486 10.2353/ajpath.2009.090096 1:CAS:528:DC%2BD1MXhtlWitbfK
    • Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380-8.
    • (2009) Am J Pathol , vol.175 , pp. 1380-1388
    • Li, J.1    Qu, X.2    Bertram, J.F.3
  • 15
    • 82355190219 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of renal fibrosis
    • 22009250 10.1038/nrneph.2011.149 1:CAS:528:DC%2BC3MXhsFeisLjP
    • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-96.
    • (2011) Nat Rev Nephrol , vol.7 , pp. 684-696
    • Liu, Y.1
  • 16
    • 84866336964 scopus 로고    scopus 로고
    • Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype
    • 22554794 10.1016/j.semcancer.2012.04.004 1:CAS:528:DC%2BC38XhtlOju7nF
    • Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22:379-84.
    • (2012) Semin Cancer Biol , vol.22 , pp. 379-384
    • Medici, D.1    Kalluri, R.2
  • 17
    • 84866336964 scopus 로고    scopus 로고
    • Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype
    • Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Seminars Cancer Biol. 2012.
    • (2012) Seminars Cancer Biol.
    • Medici, D.1    Kalluri, R.2
  • 18
    • 0036177427 scopus 로고    scopus 로고
    • Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation
    • 11841535 10.1046/j.1523-1747.2002.01641.x 1:CAS:528:DC%2BD38Xitl2isr0%3D
    • Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002;118:211-5.
    • (2002) J Invest Dermatol , vol.118 , pp. 211-215
    • Verrecchia, F.1    Mauviel, A.2
  • 19
    • 0033638127 scopus 로고    scopus 로고
    • Molecular basis of renal fibrosis
    • 11149129 10.1007/s004670000461 1:STN:280:DC%2BD3M7lt1Olug%3D%3D
    • Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000;15:290-301.
    • (2000) Pediatr Nephrol , vol.15 , pp. 290-301
    • Eddy, A.A.1
  • 20
    • 36448936383 scopus 로고    scopus 로고
    • TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility
    • 18000526 10.1038/nrm2297 1:CAS:528:DC%2BD2sXhtlCrsb3K
    • Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970-82.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 970-982
    • Schmierer, B.1    Hill, C.S.2
  • 21
    • 78650018824 scopus 로고    scopus 로고
    • Conversion of vascular endothelial cells into multipotent stem-like cells
    • 21102460 10.1038/nm.2252 1:CAS:528:DC%2BC3cXhsVGhsr%2FE
    • Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400-6.
    • (2010) Nat Med , vol.16 , pp. 1400-1406
    • Medici, D.1    Shore, E.M.2    Lounev, V.Y.3
  • 22
    • 59649115469 scopus 로고    scopus 로고
    • Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development
    • 1:CAS:528:DC%2BD1MXjtlyhsL8%3D
    • Azhar M, Runyan RB, Gard C, et al. Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn Off Publ Am Assoc Anat. 2009;238:431-42.
    • (2009) Dev Dyn off Publ Am Assoc Anat , vol.238 , pp. 431-442
    • Azhar, M.1    Runyan, R.B.2    Gard, C.3
  • 23
    • 0033560169 scopus 로고    scopus 로고
    • TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart
    • 10191064 10.1006/dbio.1999.9211 1:CAS:528:DyaK1MXitFOntbs%3D
    • Boyer AS, Ayerinskas II, Vincent EB, et al. TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol. 1999;208:530-45.
    • (1999) Dev Biol , vol.208 , pp. 530-545
    • Boyer, A.S.1    Ayerinskas, I.I.2    Vincent, E.B.3
  • 24
    • 79960217559 scopus 로고    scopus 로고
    • Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling
    • 21585337 10.1042/BJ20101500 1:CAS:528:DC%2BC3MXovVektLc%3D
    • Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J. 2011;437:515-20.
    • (2011) Biochem J , vol.437 , pp. 515-520
    • Medici, D.1    Potenta, S.2    Kalluri, R.3
  • 25
    • 67650999875 scopus 로고    scopus 로고
    • The basics of epithelial-mesenchymal transition
    • 19487818 10.1172/JCI39104 1:CAS:528:DC%2BD1MXntVCjtr0%3D
    • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420-8.
    • (2009) J Clin Investig , vol.119 , pp. 1420-1428
    • Kalluri, R.1    Weinberg, R.A.2
  • 26
    • 12344273467 scopus 로고    scopus 로고
    • TGF-beta receptor function in the endothelium
    • 15664386 10.1016/j.cardiores.2004.10.036 1:CAS:528:DC%2BD2MXmsVKlsg%3D%3D
    • Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65:599-608.
    • (2005) Cardiovasc Res , vol.65 , pp. 599-608
    • Lebrin, F.1    Deckers, M.2    Bertolino, P.3    Ten Dijke, P.4
  • 27
    • 0028170226 scopus 로고
    • Mechanism of activation of the TGF-beta receptor
    • 8047140 10.1038/370341a0 1:CAS:528:DyaK2cXlt1Kju78%3D
    • Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341-7.
    • (1994) Nature , vol.370 , pp. 341-347
    • Wrana, J.L.1    Attisano, L.2    Wieser, R.3
  • 28
    • 0037513432 scopus 로고    scopus 로고
    • Role of TGF-beta signaling in extracellular matrix production under high glucose conditions
    • 12753288 10.1046/j.1523-1755.2003.00016.x 1:CAS:528:DC%2BD3sXkvVyiurs%3D
    • Li JH, Huang XR, Zhu HJ, et al. Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney Int. 2003;63:2010-9.
    • (2003) Kidney Int , vol.63 , pp. 2010-2019
    • Li, J.H.1    Huang, X.R.2    Zhu, H.J.3
  • 29
    • 30744478450 scopus 로고    scopus 로고
    • The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells
    • 16253118 10.1042/BJ20051106 1:CAS:528:DC%2BD28Xht1Kqsbo%3D
    • Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J. 2006;393:601-7.
    • (2006) Biochem J , vol.393 , pp. 601-607
    • Phanish, M.K.1    Wahab, N.A.2    Colville-Nash, P.3
  • 30
    • 77949395650 scopus 로고    scopus 로고
    • Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
    • 10.1681/ASN.2009010018 1:CAS:528:DC%2BC3cXislSqtLs%3D
    • Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol JASN. 2010;21:249-60.
    • (2010) J Am Soc Nephrol JASN , vol.21 , pp. 249-260
    • Chung, A.C.1    Zhang, H.2    Kong, Y.Z.3
  • 31
    • 70349659185 scopus 로고    scopus 로고
    • Angiotensin II induces connective tissue growth factor and collagen i expression via transforming growth factor-beta-dependent and -independent Smad pathways: The role of Smad3
    • 19667256 10.1161/HYPERTENSIONAHA.109.136531 1:CAS:528:DC%2BD1MXhtFSns7rJ
    • Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension. 2009;54:877-84.
    • (2009) Hypertension , vol.54 , pp. 877-884
    • Yang, F.1    Chung, A.C.2    Huang, X.R.3    Lan, H.Y.4
  • 32
    • 36048950801 scopus 로고    scopus 로고
    • Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria
    • 17804483 10.1152/ajprenal.00274.2007 1:CAS:528:DC%2BD2sXhtlGhtrjE
    • Wang A, Ziyadeh FN, Lee EY, et al. Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol. 2007;293:F1657-65.
    • (2007) Am J Physiol Renal Physiol , vol.293
    • Wang, A.1    Ziyadeh, F.N.2    Lee, E.Y.3
  • 33
    • 84877025030 scopus 로고    scopus 로고
    • IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner
    • (in press)
    • Maleszewska M, Moonen JR, Huijkman N et al. IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology (in press).
    • Immunobiology
    • Maleszewska, M.1    Moonen, J.R.2    Huijkman, N.3
  • 34
    • 31144440253 scopus 로고    scopus 로고
    • Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning
    • 16314491 10.1242/dev.02156 1:CAS:528:DC%2BD28XhtVChu70%3D
    • Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132:5601-11.
    • (2005) Development , vol.132 , pp. 5601-5611
    • Ma, L.1    Lu, M.F.2    Schwartz, R.J.3    Martin, J.F.4
  • 35
    • 55549092471 scopus 로고    scopus 로고
    • BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development
    • 1:CAS:528:DC%2BD1cXhsVOqs7%2FM
    • McCulley DJ, Kang JO, Martin JF, Black BL. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn Off Publ Am Assoc Anat. 2008;237:3200-9.
    • (2008) Dev Dyn off Publ Am Assoc Anat , vol.237 , pp. 3200-3209
    • McCulley, D.J.1    Kang, J.O.2    Martin, J.F.3    Black, B.L.4
  • 36
    • 12344291865 scopus 로고    scopus 로고
    • Bone morphogenetic proteins
    • 15621726 10.1080/08977190412331279890 1:CAS:528:DC%2BD2MXhtFWrsQ%3D%3D
    • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233-41.
    • (2004) Growth Factors , vol.22 , pp. 233-241
    • Chen, D.1    Zhao, M.2    Mundy, G.R.3
  • 37
    • 25844500726 scopus 로고    scopus 로고
    • Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart
    • 16140292 10.1016/j.ydbio.2005.07.035 1:CAS:528:DC%2BD2MXhtVGrsbzF
    • Wang J, Sridurongrit S, Dudas M, et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol. 2005;286:299-310.
    • (2005) Dev Biol , vol.286 , pp. 299-310
    • Wang, J.1    Sridurongrit, S.2    Dudas, M.3
  • 38
    • 0035651361 scopus 로고    scopus 로고
    • Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function
    • 1:CAS:528:DC%2BD38XltlGqsQ%3D%3D
    • Morrissey J, Hruska K, Guo G, et al. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol JASN. 2002;13(Suppl 1):S14-21.
    • (2002) J Am Soc Nephrol JASN , vol.13 , Issue.SUPPL. 1
    • Morrissey, J.1    Hruska, K.2    Guo, G.3
  • 39
    • 0034758712 scopus 로고    scopus 로고
    • Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy
    • 1:CAS:528:DC%2BD3MXotl2lsrk%3D
    • Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol JASN. 2001;12:2392-9.
    • (2001) J Am Soc Nephrol JASN , vol.12 , pp. 2392-2399
    • Wang, S.N.1    Lapage, J.2    Hirschberg, R.3
  • 40
    • 2542441495 scopus 로고    scopus 로고
    • Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells
    • 15047707 10.1074/jbc.M311998200 1:CAS:528:DC%2BD2cXkt1GisLc%3D
    • Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem. 2004;279:23200-6.
    • (2004) J Biol Chem , vol.279 , pp. 23200-23206
    • Wang, S.1    Hirschberg, R.2
  • 41
    • 0037405422 scopus 로고    scopus 로고
    • BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells
    • 12676736 10.1152/ajpcell.00258.2002 1:CAS:528:DC%2BD3sXjvFGqsLw%3D
    • Wang S, Hirschberg R. BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003;284:F1006-13.
    • (2003) Am J Physiol Renal Physiol , vol.284
    • Wang, S.1    Hirschberg, R.2
  • 42
    • 0038717407 scopus 로고    scopus 로고
    • BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury
    • Zeisberg M, Hanai J, Sugimoto H. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Chronic Renal Injury. 2003; 9:964-8.
    • (2003) Chronic Renal Injury. , vol.9 , pp. 964-968
    • Zeisberg, M.1    Hanai, J.2    Sugimoto, H.3
  • 43
    • 0035143911 scopus 로고    scopus 로고
    • Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice
    • 1:CAS:528:DC%2BD3MXhtl2msLo%3D
    • Satoh M, Kashihara N, Yamasaki Y, et al. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol JASN. 2001;12:317-25.
    • (2001) J Am Soc Nephrol JASN , vol.12 , pp. 317-325
    • Satoh, M.1    Kashihara, N.2    Yamasaki, Y.3
  • 44
    • 77954877841 scopus 로고    scopus 로고
    • Angiotensin II mediates the high-glucose-induced endothelial-to- mesenchymal transition in human aortic endothelial cells
    • 20663195 10.1186/1475-2840-9-31 1:CAS:528:DC%2BC3cXhtV2rsrzF
    • Tang R, Li Q, Lv L, et al. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31.
    • (2010) Cardiovasc Diabetol , vol.9 , pp. 31
    • Tang, R.1    Li, Q.2    Lv, L.3
  • 45
    • 79551485466 scopus 로고    scopus 로고
    • Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2
    • 21189404 10.1161/HYPERTENSIONAHA.110.164244 1:CAS:528: DC%2BC3MXnvVWlsg%3D%3D
    • Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57:314-22.
    • (2011) Hypertension , vol.57 , pp. 314-322
    • Zhong, J.1    Guo, D.2    Chen, C.B.3
  • 46
    • 77955120259 scopus 로고    scopus 로고
    • Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats
    • 20689271 10.1159/000318607 1:CAS:528:DC%2BC3cXhtFOktrrN
    • Schulman IH, Zhou MS, Treuer AV, et al. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol. 2010;32:249-61.
    • (2010) Am J Nephrol , vol.32 , pp. 249-261
    • Schulman, I.H.1    Zhou, M.S.2    Treuer, A.V.3
  • 47
    • 13144249129 scopus 로고    scopus 로고
    • Angiotensin II and the endothelium: Diverse signals and effects
    • 15630047 10.1161/01.HYP.0000153321.13792.b9 1:CAS:528: DC%2BD2MXmtVWnsA%3D%3D
    • Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium: diverse signals and effects. Hypertension. 2005;45:163-9.
    • (2005) Hypertension , vol.45 , pp. 163-169
    • Watanabe, T.1    Barker, T.A.2    Berk, B.C.3
  • 48
    • 33847350691 scopus 로고    scopus 로고
    • Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases
    • 17332879 10.1172/JCI31487 1:CAS:528:DC%2BD2sXis12hsbY%3D
    • Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig. 2007;117:524-9.
    • (2007) J Clin Investig , vol.117 , pp. 524-529
    • Wynn, T.A.1
  • 49
    • 79960274565 scopus 로고    scopus 로고
    • Angiotensin II-mediated Nrf2 down-regulation: A potential causing factor for renal fibrosis?
    • 10.1007/s12272-011-0500-x 1:CAS:528:DC%2BC3MXntFKlt7c%3D
    • Kang KW. Angiotensin II-mediated Nrf2 down-regulation: a potential causing factor for renal fibrosis? Arch Pharmacal Res. 2011;34:695-7.
    • (2011) Arch Pharmacal Res , vol.34 , pp. 695-697
    • Kang, K.W.1
  • 50
    • 70849136597 scopus 로고    scopus 로고
    • Connective tissue growth factor-(CTGF, CCN2)-a marker, mediator and therapeutic target for renal fibrosis
    • 19955828 10.1159/000262316 1:CAS:528:DC%2BC3cXitlSlsb4%3D
    • Phanish MK, Winn SK, Dockrell ME. Connective tissue growth factor-(CTGF, CCN2)-a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol. 2010;114:e83-92.
    • (2010) Nephron Exp Nephrol , vol.114
    • Phanish, M.K.1    Winn, S.K.2    Dockrell, M.E.3
  • 51
    • 77957573525 scopus 로고    scopus 로고
    • Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy
    • 20682692 10.2337/db09-1631 1:CAS:528:DC%2BC3cXhsVGhs7fO
    • Li J, Qu X, Yao J, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:2612-24.
    • (2010) Diabetes , vol.59 , pp. 2612-2624
    • Li, J.1    Qu, X.2    Yao, J.3
  • 52
    • 1342268353 scopus 로고    scopus 로고
    • Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: Implications for diabetic renal and vascular disease
    • 1:CAS:528:DC%2BD2cXlvFOqsg%3D%3D
    • Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:176-8.
    • (2004) FASEB J off Publ Fed Am Soc Exp Biol , vol.18 , pp. 176-178
    • Li, J.H.1    Huang, X.R.2    Zhu, H.J.3
  • 53
    • 78650784685 scopus 로고    scopus 로고
    • Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades
    • 21179235 1:CAS:528:DC%2BC3cXhsF2lsbbM
    • Ma J, Liu T, Dong X. Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades. Mol Vis. 2010;16:2669-79.
    • (2010) Mol Vis , vol.16 , pp. 2669-2679
    • Ma, J.1    Liu, T.2    Dong, X.3
  • 54
    • 0025611642 scopus 로고
    • Basic FGF treatment of endothelial cells down-regulates the 85-kDa TGF beta receptor subtype and decreases the growth inhibitory response to TGF-beta 1
    • 2173937 10.3109/08977199009043908 1:STN:280:DyaK3M%2FlvVOlug%3D%3D
    • Fafeur V, Terman BI, Blum J, Bohlen P. Basic FGF treatment of endothelial cells down-regulates the 85-kDa TGF beta receptor subtype and decreases the growth inhibitory response to TGF-beta 1. Growth Factors. 1990;3:237-45.
    • (1990) Growth Factors , vol.3 , pp. 237-245
    • Fafeur, V.1    Terman, B.I.2    Blum, J.3    Bohlen, P.4
  • 55
    • 0142139197 scopus 로고    scopus 로고
    • FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: A role for myf-5 and Smad-mediated signaling pathways
    • 14578427 10.1167/iovs.03-0291
    • Papetti M, Shujath J, Riley KN, Herman IM. FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 2003;44:4994-5005.
    • (2003) Invest Ophthalmol Vis Sci , vol.44 , pp. 4994-5005
    • Papetti, M.1    Shujath, J.2    Riley, K.N.3    Herman, I.M.4
  • 56
    • 18144383021 scopus 로고    scopus 로고
    • Cellular signaling by fibroblast growth factor receptors
    • 15863030 10.1016/j.cytogfr.2005.01.001 1:CAS:528:DC%2BD2MXjvVOns7k%3D
    • Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139-49.
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 139-149
    • Eswarakumar, V.P.1    Lax, I.2    Schlessinger, J.3
  • 57
    • 77955633219 scopus 로고    scopus 로고
    • FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway
    • 20495078 10.1152/ajplung.00070.2010 1:CAS:528:DC%2BC3cXhtVOhtLjP
    • Ramos C, Becerril C, Montano M, et al. FGF-1 reverts epithelial- mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol. 2010;299:L222-31.
    • (2010) Am J Physiol Lung Cell Mol Physiol , vol.299
    • Ramos, C.1    Becerril, C.2    Montano, M.3
  • 58
    • 84871676561 scopus 로고    scopus 로고
    • FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression
    • 23200853 10.1016/j.celrep.2012.10.021 1:CAS:528:DC%2BC3sXlt1ygtw%3D%3D
    • Chen PY, Qin L, Barnes C, et al. FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2012;2:1684-96.
    • (2012) Cell Rep , vol.2 , pp. 1684-1696
    • Chen, P.Y.1    Qin, L.2    Barnes, C.3
  • 59
    • 84856171521 scopus 로고    scopus 로고
    • Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21
    • 22095988 10.1161/ATVBAHA.111.234286 1:CAS:528:DC%2BC38XovFOhtA%3D%3D
    • Kumarswamy R, Volkmann I, Jazbutyte V, et al. Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012;32:361-9.
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 361-369
    • Kumarswamy, R.1    Volkmann, I.2    Jazbutyte, V.3
  • 60
    • 80052316668 scopus 로고    scopus 로고
    • Smad3-mediated upregulation of miR-21 promotes renal fibrosis
    • 10.1681/ASN.2010111168 1:CAS:528:DC%2BC3MXht1GktLzO
    • Zhong X, Chung AC, Chen HY, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol JASN. 2011;22:1668-81.
    • (2011) J Am Soc Nephrol JASN , vol.22 , pp. 1668-1681
    • Zhong, X.1    Chung, A.C.2    Chen, H.Y.3
  • 61
    • 80052596763 scopus 로고    scopus 로고
    • MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production
    • 21778427 10.1161/CIRCRESAHA.111.247635 1:CAS:528:DC%2BC3MXhtFWkt7zN
    • Lagendijk AK, Goumans MJ, Burkhard SB, Bakkers J. MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res. 2011;109:649-57.
    • (2011) Circ Res , vol.109 , pp. 649-657
    • Lagendijk, A.K.1    Goumans, M.J.2    Burkhard, S.B.3    Bakkers, J.4
  • 62
    • 84857111170 scopus 로고    scopus 로고
    • Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT
    • 22245495 10.1016/j.cellsig.2011.12.024 1:CAS:528:DC%2BC38Xis1altLk%3D
    • Ghosh AK, Nagpal V, Covington JW, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012;24:1031-6.
    • (2012) Cell Signal , vol.24 , pp. 1031-1036
    • Ghosh, A.K.1    Nagpal, V.2    Covington, J.W.3
  • 63
    • 57749168828 scopus 로고    scopus 로고
    • MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
    • 19043405 10.1038/nature07511 1:CAS:528:DC%2BD1cXhsFWmsLbF
    • Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-4.
    • (2008) Nature , vol.456 , pp. 980-984
    • Thum, T.1    Gross, C.2    Fiedler, J.3
  • 64
    • 77955373730 scopus 로고    scopus 로고
    • MiR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
    • 20643828 10.1084/jem.20100035 1:CAS:528:DC%2BC3cXhtVejt7nL
    • Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589-97.
    • (2010) J Exp Med , vol.207 , pp. 1589-1597
    • Liu, G.1    Friggeri, A.2    Yang, Y.3
  • 65
    • 67849099709 scopus 로고    scopus 로고
    • MicroRNAs and the kidney: Coming of age
    • 19424061 10.1097/MNH.0b013e32832c9da2 1:CAS:528:DC%2BD1MXnsFyhtrw%3D
    • Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009;18:317-23.
    • (2009) Curr Opin Nephrol Hypertens , vol.18 , pp. 317-323
    • Saal, S.1    Harvey, S.J.2
  • 66
    • 34247642629 scopus 로고    scopus 로고
    • Therapies for bleomycin induced lung fibrosis through regulation of TGF-beta1 induced collagen gene expression
    • 17387717 10.1002/jcp.20972 1:CAS:528:DC%2BD2sXkvFCnsrk%3D
    • Cutroneo KR, White SL, Phan SH, Ehrlich HP. Therapies for bleomycin induced lung fibrosis through regulation of TGF-beta1 induced collagen gene expression. J Cell Physiol. 2007;211:585-9.
    • (2007) J Cell Physiol , vol.211 , pp. 585-589
    • Cutroneo, K.R.1    White, S.L.2    Phan, S.H.3    Ehrlich, H.P.4
  • 67
    • 78651397823 scopus 로고    scopus 로고
    • Systems biology of interstitial lung diseases: Integration of mRNA and microRNA expression changes
    • 21241464 10.1186/1755-8794-4-8 1:CAS:528:DC%2BC3MXhslamu7s%3D
    • Cho JH, Gelinas R, Wang K, et al. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics. 2011;4:8.
    • (2011) BMC Med Genomics , vol.4 , pp. 8
    • Cho, J.H.1    Gelinas, R.2    Wang, K.3
  • 68
    • 84863232852 scopus 로고    scopus 로고
    • ACVR1, a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a
    • 22408438 10.3390/ijms13022063 1:CAS:528:DC%2BC38XjtlagtLs%3D
    • Song H, Wang Q, Wen J, et al. ACVR1, a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a. Int J Mol Sci. 2012;13:2063-77.
    • (2012) Int J Mol Sci , vol.13 , pp. 2063-2077
    • Song, H.1    Wang, Q.2    Wen, J.3
  • 69
    • 77955399498 scopus 로고    scopus 로고
    • Inhibition and role of let-7d in idiopathic pulmonary fibrosis
    • 20395557 10.1164/rccm.200911-1698OC 1:CAS:528:DC%2BC3cXhtVyhs7vJ
    • Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182:220-9.
    • (2010) Am J Respir Crit Care Med , vol.182 , pp. 220-229
    • Pandit, K.V.1    Corcoran, D.2    Yousef, H.3
  • 70
    • 84856006423 scopus 로고    scopus 로고
    • Participation of miR-200 in pulmonary fibrosis
    • 22189082 10.1016/j.ajpath.2011.10.005 1:CAS:528:DC%2BC38XivVent7s%3D
    • Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 2012;180:484-93.
    • (2012) Am J Pathol , vol.180 , pp. 484-493
    • Yang, S.1    Banerjee, S.2    De Freitas, A.3
  • 71
    • 84862909357 scopus 로고    scopus 로고
    • The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression
    • 22012804 10.1152/ajprenal.00268.2011 1:CAS:528:DC%2BC38Xjt1Gjtb4%3D
    • Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302:F369-79.
    • (2012) Am J Physiol Renal Physiol , vol.302
    • Xiong, M.1    Jiang, L.2    Zhou, Y.3
  • 72
    • 78149459698 scopus 로고    scopus 로고
    • MiR-200b precursor can ameliorate renal tubulointerstitial fibrosis
    • 21049046 10.1371/journal.pone.0013614
    • Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE. 2010;5:e13614.
    • (2010) PLoS ONE , vol.5 , pp. 13614
    • Oba, S.1    Kumano, S.2    Suzuki, E.3
  • 73
    • 47249091921 scopus 로고    scopus 로고
    • The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
    • 18411277 10.1074/jbc.C800074200 1:CAS:528:DC%2BD1cXmtlynsbc%3D
    • Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910-4.
    • (2008) J Biol Chem , vol.283 , pp. 14910-14914
    • Korpal, M.1    Lee, E.S.2    Hu, G.3    Kang, Y.4
  • 74
    • 43049103824 scopus 로고    scopus 로고
    • The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
    • 18376396 10.1038/ncb1722 1:CAS:528:DC%2BD1cXltl2is7c%3D
    • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593-601.
    • (2008) Nat Cell Biol , vol.10 , pp. 593-601
    • Gregory, P.A.1    Bert, A.G.2    Paterson, E.L.3
  • 75
    • 84865017512 scopus 로고    scopus 로고
    • Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma
    • 22766839 1:CAS:528:DC%2BC38XhtlWhurjL
    • Yamasaki T, Seki N, Yamada Y, et al. Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 2012;41:805-17.
    • (2012) Int J Oncol , vol.41 , pp. 805-817
    • Yamasaki, T.1    Seki, N.2    Yamada, Y.3
  • 76
    • 84861990869 scopus 로고    scopus 로고
    • Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: Role in epithelial-to-mesenchymal transition
    • 21986943 10.1038/onc.2011.457 1:CAS:528:DC%2BC3MXht12hsrzO
    • Papadimitriou E, Vasilaki E, Vorvis C, et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2012;31:2862-75.
    • (2012) Oncogene , vol.31 , pp. 2862-2875
    • Papadimitriou, E.1    Vasilaki, E.2    Vorvis, C.3
  • 77
    • 84857147817 scopus 로고    scopus 로고
    • Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells
    • 22363487 10.1371/journal.pone.0030771 1:CAS:528:DC%2BC38Xjt1Sns78%3D
    • Du R, Sun W, Xia L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS ONE. 2012;7:e30771.
    • (2012) PLoS ONE , vol.7 , pp. 30771
    • Du, R.1    Sun, W.2    Xia, L.3
  • 78
    • 78650470110 scopus 로고    scopus 로고
    • MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382
    • 20716515 10.1093/nar/gkq718 1:CAS:528:DC%2BC3cXhsFGrsrbK
    • Kriegel AJ, Fang Y, Liu Y, et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res. 2010;38:8338-47.
    • (2010) Nucleic Acids Res , vol.38 , pp. 8338-8347
    • Kriegel, A.J.1    Fang, Y.2    Liu, Y.3
  • 79
    • 77954274715 scopus 로고    scopus 로고
    • E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
    • 20393144 10.2337/db09-1736 1:CAS:528:DC%2BC3cXpsVOlsLo%3D
    • Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010;59:1794-802.
    • (2010) Diabetes , vol.59 , pp. 1794-1802
    • Wang, B.1    Herman-Edelstein, M.2    Koh, P.3
  • 80
    • 77955611511 scopus 로고    scopus 로고
    • MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis
    • 10.1681/ASN.2010020134 1:CAS:528:DC%2BC3cXhtVyku73N
    • Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3- driven renal fibrosis. J Am Soc Nephrol JASN. 2010;21:1317-25.
    • (2010) J Am Soc Nephrol JASN , vol.21 , pp. 1317-1325
    • Chung, A.C.1    Huang, X.R.2    Meng, X.3    Lan, H.Y.4
  • 81
    • 33847682663 scopus 로고    scopus 로고
    • MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
    • 17360662 10.1073/pnas.0611192104 1:CAS:528:DC%2BD2sXjtVWltLo%3D
    • Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA. 2007;104:3432-7.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 3432-3437
    • Kato, M.1    Zhang, J.2    Wang, M.3
  • 82
    • 84855511123 scopus 로고    scopus 로고
    • Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl- proline: A blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors
    • 10.1186/1755-1536-4-25 1:CAS:528:DC%2BC38Xjt1Krt70%3D
    • Kanasaki M, Nagai T, Kitada M, et al. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis & tissue repair. 2011;4:25.
    • (2011) Fibrogenesis & Tissue Repair , vol.4 , pp. 25
    • Kanasaki, M.1    Nagai, T.2    Kitada, M.3
  • 83
    • 84925946217 scopus 로고    scopus 로고
    • Antifibrotic treatment and other new strategies for improving renal outcomes
    • 21659774 10.1159/000325671 1:CAS:528:DC%2BC38XlsFWgsg%3D%3D
    • Mathew A, Cunard R, Sharma K. Antifibrotic treatment and other new strategies for improving renal outcomes. Contrib Nephrol. 2011;170:217-27.
    • (2011) Contrib Nephrol , vol.170 , pp. 217-227
    • Mathew, A.1    Cunard, R.2    Sharma, K.3
  • 84
    • 25444463573 scopus 로고    scopus 로고
    • Endothelial/pericyte interactions
    • 16166562 10.1161/01.RES.0000182903.16652.d7 1:CAS:528: DC%2BD2MXpvFGrtLg%3D
    • Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512-23.
    • (2005) Circ Res , vol.97 , pp. 512-523
    • Armulik, A.1    Abramsson, A.2    Betsholtz, C.3
  • 85
    • 35948945337 scopus 로고    scopus 로고
    • Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts
    • 17974953 10.1158/0008-5472.CAN-07-3127 1:CAS:528:DC%2BD2sXht1erur7N
    • Zeisberg EM, Potenta S, Xie L, et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123-8.
    • (2007) Cancer Res , vol.67 , pp. 10123-10128
    • Zeisberg, E.M.1    Potenta, S.2    Xie, L.3
  • 86
    • 33646384428 scopus 로고    scopus 로고
    • Fibroblasts in cancer
    • 16572188 10.1038/nrc1877 1:CAS:528:DC%2BD28XjslGitLw%3D
    • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392-401.
    • (2006) Nat Rev Cancer , vol.6 , pp. 392-401
    • Kalluri, R.1    Zeisberg, M.2
  • 87
    • 67849112665 scopus 로고    scopus 로고
    • Inhibition of TGF-beta signaling by miR-23b [abstract]
    • Shang H, Nitsche E, Jing X, et al. Inhibition of TGF-beta signaling by miR-23b [abstract]. J Am Soc Nephrol. 2008;19:143A.
    • (2008) J Am Soc Nephrol , vol.19
    • Shang, H.1    Nitsche, E.2    Jing, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.