-
1
-
-
35848968871
-
Prevalence of chronic kidney disease in the United States
-
10.1001/jama.298.17.2038 1:CAS:528:DC%2BD2sXht1yjsLnM
-
Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA, J Am Med Assoc. 2007;298:2038-47.
-
(2007)
JAMA, J Am Med Assoc
, vol.298
, pp. 2038-2047
-
-
Coresh, J.1
Selvin, E.2
Stevens, L.A.3
-
2
-
-
38549159026
-
Cellular and molecular mechanisms of fibrosis
-
18161745 10.1002/path.2277 1:CAS:528:DC%2BD1cXhvFCkt7w%3D
-
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199-210.
-
(2008)
J Pathol
, vol.214
, pp. 199-210
-
-
Wynn, T.A.1
-
3
-
-
79951762325
-
Renal fibrosis
-
21189948 10.3345/kjp.2010.53.7.735
-
Cho MH. Renal fibrosis. Korean J Pediatr. 2010;53:735-40.
-
(2010)
Korean J Pediatr
, vol.53
, pp. 735-740
-
-
Cho, M.H.1
-
5
-
-
77957729712
-
The origin of fibroblasts and mechanism of cardiac fibrosis
-
20635395 10.1002/jcp.22322 1:CAS:528:DC%2BC3cXhtFGqsLzF
-
Krenning G, Zeisberg EM, Kalluri R. The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol. 2010;225:631-7.
-
(2010)
J Cell Physiol
, vol.225
, pp. 631-637
-
-
Krenning, G.1
Zeisberg, E.M.2
Kalluri, R.3
-
6
-
-
79551479332
-
Renal interstitial fibrosis: A critical evaluation of the origin of myofibroblasts
-
21252512 10.1159/000313946 1:CAS:528:DC%2BC3MXhtFWlsb7E
-
Barnes JL, Glass WF 2nd. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib Nephrol. 2011;169:73-93.
-
(2011)
Contrib Nephrol
, vol.169
, pp. 73-93
-
-
Barnes, J.L.1
Glass II, W.F.2
-
7
-
-
80053394522
-
Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice
-
21911936 10.1172/JCI57301 1:CAS:528:DC%2BC3MXht12ht7nK
-
Asada N, Takase M, Nakamura J, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Investig. 2011;121:3981-90.
-
(2011)
J Clin Investig
, vol.121
, pp. 3981-3990
-
-
Asada, N.1
Takase, M.2
Nakamura, J.3
-
8
-
-
80052851503
-
Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders
-
21763673 10.1016/j.ajpath.2011.06.001 1:CAS:528:DC%2BC3MXhtF2jsLvN
-
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179:1074-80.
-
(2011)
Am J Pathol
, vol.179
, pp. 1074-1080
-
-
Piera-Velazquez, S.1
Li, Z.2
Jimenez, S.A.3
-
9
-
-
0016590595
-
Structural analysis of endocardial cytodifferentiation
-
Markwald RR, Fizharris TP, Smith WN. Structural analysis of endocardial cytodifferentiation. Dev Biol. 1975; p. 160-80.
-
(1975)
Dev Biol.
, pp. 160-180
-
-
Markwald, R.R.1
Fizharris, T.P.2
Smith, W.N.3
-
10
-
-
34250695906
-
Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart
-
17587820 10.1159/000101315 1:CAS:528:DC%2BD2sXmvFSnurY%3D
-
Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007;185:146-56.
-
(2007)
Cells Tissues Organs
, vol.185
, pp. 146-156
-
-
Mercado-Pimentel, M.E.1
Runyan, R.B.2
-
11
-
-
0035865048
-
Tie2-Cre transgenic mice: A new model for endothelial cell-lineage analysis in vivo
-
11161575 10.1006/dbio.2000.0106 1:CAS:528:DC%2BD3MXnsV2qsw%3D%3D
-
Kisanuki YY, Hammer RE, Miyazaki J, et al. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230:230-42.
-
(2001)
Dev Biol
, vol.230
, pp. 230-242
-
-
Kisanuki, Y.Y.1
Hammer, R.E.2
Miyazaki, J.3
-
12
-
-
80054976356
-
Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis
-
21945322 10.1016/j.ajpath.2011.07.042 1:CAS:528:DC%2BC3MXhsFCmu7nK
-
Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol. 2011;179:2660-73.
-
(2011)
Am J Pathol
, vol.179
, pp. 2660-2673
-
-
Rieder, F.1
Kessler, S.P.2
West, G.A.3
-
13
-
-
55249103431
-
Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
-
10.1681/ASN.2008050513
-
Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol JASN. 2008;19:2282-7.
-
(2008)
J Am Soc Nephrol JASN
, vol.19
, pp. 2282-2287
-
-
Zeisberg, E.M.1
Potenta, S.E.2
Sugimoto, H.3
-
14
-
-
73549092294
-
Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
-
19729486 10.2353/ajpath.2009.090096 1:CAS:528:DC%2BD1MXhtlWitbfK
-
Li J, Qu X, Bertram JF. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 2009;175:1380-8.
-
(2009)
Am J Pathol
, vol.175
, pp. 1380-1388
-
-
Li, J.1
Qu, X.2
Bertram, J.F.3
-
15
-
-
82355190219
-
Cellular and molecular mechanisms of renal fibrosis
-
22009250 10.1038/nrneph.2011.149 1:CAS:528:DC%2BC3MXhsFeisLjP
-
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684-96.
-
(2011)
Nat Rev Nephrol
, vol.7
, pp. 684-696
-
-
Liu, Y.1
-
16
-
-
84866336964
-
Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype
-
22554794 10.1016/j.semcancer.2012.04.004 1:CAS:528:DC%2BC38XhtlOju7nF
-
Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol. 2012;22:379-84.
-
(2012)
Semin Cancer Biol
, vol.22
, pp. 379-384
-
-
Medici, D.1
Kalluri, R.2
-
17
-
-
84866336964
-
Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype
-
Medici D, Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Seminars Cancer Biol. 2012.
-
(2012)
Seminars Cancer Biol.
-
-
Medici, D.1
Kalluri, R.2
-
18
-
-
0036177427
-
Transforming growth factor-beta signaling through the Smad pathway: Role in extracellular matrix gene expression and regulation
-
11841535 10.1046/j.1523-1747.2002.01641.x 1:CAS:528:DC%2BD38Xitl2isr0%3D
-
Verrecchia F, Mauviel A. Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol. 2002;118:211-5.
-
(2002)
J Invest Dermatol
, vol.118
, pp. 211-215
-
-
Verrecchia, F.1
Mauviel, A.2
-
19
-
-
0033638127
-
Molecular basis of renal fibrosis
-
11149129 10.1007/s004670000461 1:STN:280:DC%2BD3M7lt1Olug%3D%3D
-
Eddy AA. Molecular basis of renal fibrosis. Pediatr Nephrol. 2000;15:290-301.
-
(2000)
Pediatr Nephrol
, vol.15
, pp. 290-301
-
-
Eddy, A.A.1
-
20
-
-
36448936383
-
TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility
-
18000526 10.1038/nrm2297 1:CAS:528:DC%2BD2sXhtlCrsb3K
-
Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970-82.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 970-982
-
-
Schmierer, B.1
Hill, C.S.2
-
21
-
-
78650018824
-
Conversion of vascular endothelial cells into multipotent stem-like cells
-
21102460 10.1038/nm.2252 1:CAS:528:DC%2BC3cXhsVGhsr%2FE
-
Medici D, Shore EM, Lounev VY, et al. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16:1400-6.
-
(2010)
Nat Med
, vol.16
, pp. 1400-1406
-
-
Medici, D.1
Shore, E.M.2
Lounev, V.Y.3
-
22
-
-
59649115469
-
Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development
-
1:CAS:528:DC%2BD1MXjtlyhsL8%3D
-
Azhar M, Runyan RB, Gard C, et al. Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn Off Publ Am Assoc Anat. 2009;238:431-42.
-
(2009)
Dev Dyn off Publ Am Assoc Anat
, vol.238
, pp. 431-442
-
-
Azhar, M.1
Runyan, R.B.2
Gard, C.3
-
23
-
-
0033560169
-
TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart
-
10191064 10.1006/dbio.1999.9211 1:CAS:528:DyaK1MXitFOntbs%3D
-
Boyer AS, Ayerinskas II, Vincent EB, et al. TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol. 1999;208:530-45.
-
(1999)
Dev Biol
, vol.208
, pp. 530-545
-
-
Boyer, A.S.1
Ayerinskas, I.I.2
Vincent, E.B.3
-
24
-
-
79960217559
-
Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling
-
21585337 10.1042/BJ20101500 1:CAS:528:DC%2BC3MXovVektLc%3D
-
Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J. 2011;437:515-20.
-
(2011)
Biochem J
, vol.437
, pp. 515-520
-
-
Medici, D.1
Potenta, S.2
Kalluri, R.3
-
25
-
-
67650999875
-
The basics of epithelial-mesenchymal transition
-
19487818 10.1172/JCI39104 1:CAS:528:DC%2BD1MXntVCjtr0%3D
-
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420-8.
-
(2009)
J Clin Investig
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
26
-
-
12344273467
-
TGF-beta receptor function in the endothelium
-
15664386 10.1016/j.cardiores.2004.10.036 1:CAS:528:DC%2BD2MXmsVKlsg%3D%3D
-
Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005;65:599-608.
-
(2005)
Cardiovasc Res
, vol.65
, pp. 599-608
-
-
Lebrin, F.1
Deckers, M.2
Bertolino, P.3
Ten Dijke, P.4
-
27
-
-
0028170226
-
Mechanism of activation of the TGF-beta receptor
-
8047140 10.1038/370341a0 1:CAS:528:DyaK2cXlt1Kju78%3D
-
Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341-7.
-
(1994)
Nature
, vol.370
, pp. 341-347
-
-
Wrana, J.L.1
Attisano, L.2
Wieser, R.3
-
28
-
-
0037513432
-
Role of TGF-beta signaling in extracellular matrix production under high glucose conditions
-
12753288 10.1046/j.1523-1755.2003.00016.x 1:CAS:528:DC%2BD3sXkvVyiurs%3D
-
Li JH, Huang XR, Zhu HJ, et al. Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney Int. 2003;63:2010-9.
-
(2003)
Kidney Int
, vol.63
, pp. 2010-2019
-
-
Li, J.H.1
Huang, X.R.2
Zhu, H.J.3
-
29
-
-
30744478450
-
The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells
-
16253118 10.1042/BJ20051106 1:CAS:528:DC%2BD28Xht1Kqsbo%3D
-
Phanish MK, Wahab NA, Colville-Nash P, et al. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Biochem J. 2006;393:601-7.
-
(2006)
Biochem J
, vol.393
, pp. 601-607
-
-
Phanish, M.K.1
Wahab, N.A.2
Colville-Nash, P.3
-
30
-
-
77949395650
-
Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
-
10.1681/ASN.2009010018 1:CAS:528:DC%2BC3cXislSqtLs%3D
-
Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling. J Am Soc Nephrol JASN. 2010;21:249-60.
-
(2010)
J Am Soc Nephrol JASN
, vol.21
, pp. 249-260
-
-
Chung, A.C.1
Zhang, H.2
Kong, Y.Z.3
-
31
-
-
70349659185
-
Angiotensin II induces connective tissue growth factor and collagen i expression via transforming growth factor-beta-dependent and -independent Smad pathways: The role of Smad3
-
19667256 10.1161/HYPERTENSIONAHA.109.136531 1:CAS:528:DC%2BD1MXhtFSns7rJ
-
Yang F, Chung AC, Huang XR, Lan HY. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension. 2009;54:877-84.
-
(2009)
Hypertension
, vol.54
, pp. 877-884
-
-
Yang, F.1
Chung, A.C.2
Huang, X.R.3
Lan, H.Y.4
-
32
-
-
36048950801
-
Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria
-
17804483 10.1152/ajprenal.00274.2007 1:CAS:528:DC%2BD2sXhtlGhtrjE
-
Wang A, Ziyadeh FN, Lee EY, et al. Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol. 2007;293:F1657-65.
-
(2007)
Am J Physiol Renal Physiol
, vol.293
-
-
Wang, A.1
Ziyadeh, F.N.2
Lee, E.Y.3
-
33
-
-
84877025030
-
IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner
-
(in press)
-
Maleszewska M, Moonen JR, Huijkman N et al. IL-1beta and TGFbeta2 synergistically induce endothelial to mesenchymal transition in an NFkappaB-dependent manner. Immunobiology (in press).
-
Immunobiology
-
-
Maleszewska, M.1
Moonen, J.R.2
Huijkman, N.3
-
34
-
-
31144440253
-
Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning
-
16314491 10.1242/dev.02156 1:CAS:528:DC%2BD28XhtVChu70%3D
-
Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132:5601-11.
-
(2005)
Development
, vol.132
, pp. 5601-5611
-
-
Ma, L.1
Lu, M.F.2
Schwartz, R.J.3
Martin, J.F.4
-
35
-
-
55549092471
-
BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development
-
1:CAS:528:DC%2BD1cXhsVOqs7%2FM
-
McCulley DJ, Kang JO, Martin JF, Black BL. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn Off Publ Am Assoc Anat. 2008;237:3200-9.
-
(2008)
Dev Dyn off Publ Am Assoc Anat
, vol.237
, pp. 3200-3209
-
-
McCulley, D.J.1
Kang, J.O.2
Martin, J.F.3
Black, B.L.4
-
36
-
-
12344291865
-
Bone morphogenetic proteins
-
15621726 10.1080/08977190412331279890 1:CAS:528:DC%2BD2MXhtFWrsQ%3D%3D
-
Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22:233-41.
-
(2004)
Growth Factors
, vol.22
, pp. 233-241
-
-
Chen, D.1
Zhao, M.2
Mundy, G.R.3
-
37
-
-
25844500726
-
Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart
-
16140292 10.1016/j.ydbio.2005.07.035 1:CAS:528:DC%2BD2MXhtVGrsbzF
-
Wang J, Sridurongrit S, Dudas M, et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol. 2005;286:299-310.
-
(2005)
Dev Biol
, vol.286
, pp. 299-310
-
-
Wang, J.1
Sridurongrit, S.2
Dudas, M.3
-
38
-
-
0035651361
-
Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function
-
1:CAS:528:DC%2BD38XltlGqsQ%3D%3D
-
Morrissey J, Hruska K, Guo G, et al. Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol JASN. 2002;13(Suppl 1):S14-21.
-
(2002)
J Am Soc Nephrol JASN
, vol.13
, Issue.SUPPL. 1
-
-
Morrissey, J.1
Hruska, K.2
Guo, G.3
-
39
-
-
0034758712
-
Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy
-
1:CAS:528:DC%2BD3MXotl2lsrk%3D
-
Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol JASN. 2001;12:2392-9.
-
(2001)
J Am Soc Nephrol JASN
, vol.12
, pp. 2392-2399
-
-
Wang, S.N.1
Lapage, J.2
Hirschberg, R.3
-
40
-
-
2542441495
-
Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells
-
15047707 10.1074/jbc.M311998200 1:CAS:528:DC%2BD2cXkt1GisLc%3D
-
Wang S, Hirschberg R. Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem. 2004;279:23200-6.
-
(2004)
J Biol Chem
, vol.279
, pp. 23200-23206
-
-
Wang, S.1
Hirschberg, R.2
-
41
-
-
0037405422
-
BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells
-
12676736 10.1152/ajpcell.00258.2002 1:CAS:528:DC%2BD3sXjvFGqsLw%3D
-
Wang S, Hirschberg R. BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol. 2003;284:F1006-13.
-
(2003)
Am J Physiol Renal Physiol
, vol.284
-
-
Wang, S.1
Hirschberg, R.2
-
42
-
-
0038717407
-
BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury
-
Zeisberg M, Hanai J, Sugimoto H. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Chronic Renal Injury. 2003; 9:964-8.
-
(2003)
Chronic Renal Injury.
, vol.9
, pp. 964-968
-
-
Zeisberg, M.1
Hanai, J.2
Sugimoto, H.3
-
43
-
-
0035143911
-
Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice
-
1:CAS:528:DC%2BD3MXhtl2msLo%3D
-
Satoh M, Kashihara N, Yamasaki Y, et al. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol JASN. 2001;12:317-25.
-
(2001)
J Am Soc Nephrol JASN
, vol.12
, pp. 317-325
-
-
Satoh, M.1
Kashihara, N.2
Yamasaki, Y.3
-
44
-
-
77954877841
-
Angiotensin II mediates the high-glucose-induced endothelial-to- mesenchymal transition in human aortic endothelial cells
-
20663195 10.1186/1475-2840-9-31 1:CAS:528:DC%2BC3cXhtV2rsrzF
-
Tang R, Li Q, Lv L, et al. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31.
-
(2010)
Cardiovasc Diabetol
, vol.9
, pp. 31
-
-
Tang, R.1
Li, Q.2
Lv, L.3
-
45
-
-
79551485466
-
Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2
-
21189404 10.1161/HYPERTENSIONAHA.110.164244 1:CAS:528: DC%2BC3MXnvVWlsg%3D%3D
-
Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57:314-22.
-
(2011)
Hypertension
, vol.57
, pp. 314-322
-
-
Zhong, J.1
Guo, D.2
Chen, C.B.3
-
46
-
-
77955120259
-
Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats
-
20689271 10.1159/000318607 1:CAS:528:DC%2BC3cXhtFOktrrN
-
Schulman IH, Zhou MS, Treuer AV, et al. Altered renal expression of angiotensin II receptors, renin receptor, and ACE-2 precede the development of renal fibrosis in aging rats. Am J Nephrol. 2010;32:249-61.
-
(2010)
Am J Nephrol
, vol.32
, pp. 249-261
-
-
Schulman, I.H.1
Zhou, M.S.2
Treuer, A.V.3
-
47
-
-
13144249129
-
Angiotensin II and the endothelium: Diverse signals and effects
-
15630047 10.1161/01.HYP.0000153321.13792.b9 1:CAS:528: DC%2BD2MXmtVWnsA%3D%3D
-
Watanabe T, Barker TA, Berk BC. Angiotensin II and the endothelium: diverse signals and effects. Hypertension. 2005;45:163-9.
-
(2005)
Hypertension
, vol.45
, pp. 163-169
-
-
Watanabe, T.1
Barker, T.A.2
Berk, B.C.3
-
48
-
-
33847350691
-
Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases
-
17332879 10.1172/JCI31487 1:CAS:528:DC%2BD2sXis12hsbY%3D
-
Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig. 2007;117:524-9.
-
(2007)
J Clin Investig
, vol.117
, pp. 524-529
-
-
Wynn, T.A.1
-
49
-
-
79960274565
-
Angiotensin II-mediated Nrf2 down-regulation: A potential causing factor for renal fibrosis?
-
10.1007/s12272-011-0500-x 1:CAS:528:DC%2BC3MXntFKlt7c%3D
-
Kang KW. Angiotensin II-mediated Nrf2 down-regulation: a potential causing factor for renal fibrosis? Arch Pharmacal Res. 2011;34:695-7.
-
(2011)
Arch Pharmacal Res
, vol.34
, pp. 695-697
-
-
Kang, K.W.1
-
50
-
-
70849136597
-
Connective tissue growth factor-(CTGF, CCN2)-a marker, mediator and therapeutic target for renal fibrosis
-
19955828 10.1159/000262316 1:CAS:528:DC%2BC3cXitlSlsb4%3D
-
Phanish MK, Winn SK, Dockrell ME. Connective tissue growth factor-(CTGF, CCN2)-a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol. 2010;114:e83-92.
-
(2010)
Nephron Exp Nephrol
, vol.114
-
-
Phanish, M.K.1
Winn, S.K.2
Dockrell, M.E.3
-
51
-
-
77957573525
-
Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy
-
20682692 10.2337/db09-1631 1:CAS:528:DC%2BC3cXhsVGhs7fO
-
Li J, Qu X, Yao J, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:2612-24.
-
(2010)
Diabetes
, vol.59
, pp. 2612-2624
-
-
Li, J.1
Qu, X.2
Yao, J.3
-
52
-
-
1342268353
-
Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: Implications for diabetic renal and vascular disease
-
1:CAS:528:DC%2BD2cXlvFOqsg%3D%3D
-
Li JH, Huang XR, Zhu HJ, et al. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:176-8.
-
(2004)
FASEB J off Publ Fed Am Soc Exp Biol
, vol.18
, pp. 176-178
-
-
Li, J.H.1
Huang, X.R.2
Zhu, H.J.3
-
53
-
-
78650784685
-
Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades
-
21179235 1:CAS:528:DC%2BC3cXhsF2lsbbM
-
Ma J, Liu T, Dong X. Advanced glycation end products of bovine serum albumin-induced endothelial-to-mesenchymal transition in cultured human and monkey endothelial cells via protein kinase B signaling cascades. Mol Vis. 2010;16:2669-79.
-
(2010)
Mol Vis
, vol.16
, pp. 2669-2679
-
-
Ma, J.1
Liu, T.2
Dong, X.3
-
54
-
-
0025611642
-
Basic FGF treatment of endothelial cells down-regulates the 85-kDa TGF beta receptor subtype and decreases the growth inhibitory response to TGF-beta 1
-
2173937 10.3109/08977199009043908 1:STN:280:DyaK3M%2FlvVOlug%3D%3D
-
Fafeur V, Terman BI, Blum J, Bohlen P. Basic FGF treatment of endothelial cells down-regulates the 85-kDa TGF beta receptor subtype and decreases the growth inhibitory response to TGF-beta 1. Growth Factors. 1990;3:237-45.
-
(1990)
Growth Factors
, vol.3
, pp. 237-245
-
-
Fafeur, V.1
Terman, B.I.2
Blum, J.3
Bohlen, P.4
-
55
-
-
0142139197
-
FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: A role for myf-5 and Smad-mediated signaling pathways
-
14578427 10.1167/iovs.03-0291
-
Papetti M, Shujath J, Riley KN, Herman IM. FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci. 2003;44:4994-5005.
-
(2003)
Invest Ophthalmol Vis Sci
, vol.44
, pp. 4994-5005
-
-
Papetti, M.1
Shujath, J.2
Riley, K.N.3
Herman, I.M.4
-
56
-
-
18144383021
-
Cellular signaling by fibroblast growth factor receptors
-
15863030 10.1016/j.cytogfr.2005.01.001 1:CAS:528:DC%2BD2MXjvVOns7k%3D
-
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139-49.
-
(2005)
Cytokine Growth Factor Rev
, vol.16
, pp. 139-149
-
-
Eswarakumar, V.P.1
Lax, I.2
Schlessinger, J.3
-
57
-
-
77955633219
-
FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway
-
20495078 10.1152/ajplung.00070.2010 1:CAS:528:DC%2BC3cXhtVOhtLjP
-
Ramos C, Becerril C, Montano M, et al. FGF-1 reverts epithelial- mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol. 2010;299:L222-31.
-
(2010)
Am J Physiol Lung Cell Mol Physiol
, vol.299
-
-
Ramos, C.1
Becerril, C.2
Montano, M.3
-
58
-
-
84871676561
-
FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression
-
23200853 10.1016/j.celrep.2012.10.021 1:CAS:528:DC%2BC3sXlt1ygtw%3D%3D
-
Chen PY, Qin L, Barnes C, et al. FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep. 2012;2:1684-96.
-
(2012)
Cell Rep
, vol.2
, pp. 1684-1696
-
-
Chen, P.Y.1
Qin, L.2
Barnes, C.3
-
59
-
-
84856171521
-
Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21
-
22095988 10.1161/ATVBAHA.111.234286 1:CAS:528:DC%2BC38XovFOhtA%3D%3D
-
Kumarswamy R, Volkmann I, Jazbutyte V, et al. Transforming growth factor-beta-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012;32:361-9.
-
(2012)
Arterioscler Thromb Vasc Biol
, vol.32
, pp. 361-369
-
-
Kumarswamy, R.1
Volkmann, I.2
Jazbutyte, V.3
-
60
-
-
80052316668
-
Smad3-mediated upregulation of miR-21 promotes renal fibrosis
-
10.1681/ASN.2010111168 1:CAS:528:DC%2BC3MXht1GktLzO
-
Zhong X, Chung AC, Chen HY, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol JASN. 2011;22:1668-81.
-
(2011)
J Am Soc Nephrol JASN
, vol.22
, pp. 1668-1681
-
-
Zhong, X.1
Chung, A.C.2
Chen, H.Y.3
-
61
-
-
80052596763
-
MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production
-
21778427 10.1161/CIRCRESAHA.111.247635 1:CAS:528:DC%2BC3MXhtFWkt7zN
-
Lagendijk AK, Goumans MJ, Burkhard SB, Bakkers J. MicroRNA-23 restricts cardiac valve formation by inhibiting Has2 and extracellular hyaluronic acid production. Circ Res. 2011;109:649-57.
-
(2011)
Circ Res
, vol.109
, pp. 649-657
-
-
Lagendijk, A.K.1
Goumans, M.J.2
Burkhard, S.B.3
Bakkers, J.4
-
62
-
-
84857111170
-
Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT
-
22245495 10.1016/j.cellsig.2011.12.024 1:CAS:528:DC%2BC38Xis1altLk%3D
-
Ghosh AK, Nagpal V, Covington JW, et al. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): differential expression of microRNAs during EndMT. Cell Signal. 2012;24:1031-6.
-
(2012)
Cell Signal
, vol.24
, pp. 1031-1036
-
-
Ghosh, A.K.1
Nagpal, V.2
Covington, J.W.3
-
63
-
-
57749168828
-
MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts
-
19043405 10.1038/nature07511 1:CAS:528:DC%2BD1cXhsFWmsLbF
-
Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980-4.
-
(2008)
Nature
, vol.456
, pp. 980-984
-
-
Thum, T.1
Gross, C.2
Fiedler, J.3
-
64
-
-
77955373730
-
MiR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis
-
20643828 10.1084/jem.20100035 1:CAS:528:DC%2BC3cXhtVejt7nL
-
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589-97.
-
(2010)
J Exp Med
, vol.207
, pp. 1589-1597
-
-
Liu, G.1
Friggeri, A.2
Yang, Y.3
-
65
-
-
67849099709
-
MicroRNAs and the kidney: Coming of age
-
19424061 10.1097/MNH.0b013e32832c9da2 1:CAS:528:DC%2BD1MXnsFyhtrw%3D
-
Saal S, Harvey SJ. MicroRNAs and the kidney: coming of age. Curr Opin Nephrol Hypertens. 2009;18:317-23.
-
(2009)
Curr Opin Nephrol Hypertens
, vol.18
, pp. 317-323
-
-
Saal, S.1
Harvey, S.J.2
-
66
-
-
34247642629
-
Therapies for bleomycin induced lung fibrosis through regulation of TGF-beta1 induced collagen gene expression
-
17387717 10.1002/jcp.20972 1:CAS:528:DC%2BD2sXkvFCnsrk%3D
-
Cutroneo KR, White SL, Phan SH, Ehrlich HP. Therapies for bleomycin induced lung fibrosis through regulation of TGF-beta1 induced collagen gene expression. J Cell Physiol. 2007;211:585-9.
-
(2007)
J Cell Physiol
, vol.211
, pp. 585-589
-
-
Cutroneo, K.R.1
White, S.L.2
Phan, S.H.3
Ehrlich, H.P.4
-
67
-
-
78651397823
-
Systems biology of interstitial lung diseases: Integration of mRNA and microRNA expression changes
-
21241464 10.1186/1755-8794-4-8 1:CAS:528:DC%2BC3MXhslamu7s%3D
-
Cho JH, Gelinas R, Wang K, et al. Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes. BMC Med Genomics. 2011;4:8.
-
(2011)
BMC Med Genomics
, vol.4
, pp. 8
-
-
Cho, J.H.1
Gelinas, R.2
Wang, K.3
-
68
-
-
84863232852
-
ACVR1, a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a
-
22408438 10.3390/ijms13022063 1:CAS:528:DC%2BC38XjtlagtLs%3D
-
Song H, Wang Q, Wen J, et al. ACVR1, a Therapeutic Target of Fibrodysplasia Ossificans Progressiva, Is Negatively Regulated by miR-148a. Int J Mol Sci. 2012;13:2063-77.
-
(2012)
Int J Mol Sci
, vol.13
, pp. 2063-2077
-
-
Song, H.1
Wang, Q.2
Wen, J.3
-
69
-
-
77955399498
-
Inhibition and role of let-7d in idiopathic pulmonary fibrosis
-
20395557 10.1164/rccm.200911-1698OC 1:CAS:528:DC%2BC3cXhtVyhs7vJ
-
Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182:220-9.
-
(2010)
Am J Respir Crit Care Med
, vol.182
, pp. 220-229
-
-
Pandit, K.V.1
Corcoran, D.2
Yousef, H.3
-
70
-
-
84856006423
-
Participation of miR-200 in pulmonary fibrosis
-
22189082 10.1016/j.ajpath.2011.10.005 1:CAS:528:DC%2BC38XivVent7s%3D
-
Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 2012;180:484-93.
-
(2012)
Am J Pathol
, vol.180
, pp. 484-493
-
-
Yang, S.1
Banerjee, S.2
De Freitas, A.3
-
71
-
-
84862909357
-
The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression
-
22012804 10.1152/ajprenal.00268.2011 1:CAS:528:DC%2BC38Xjt1Gjtb4%3D
-
Xiong M, Jiang L, Zhou Y, et al. The miR-200 family regulates TGF-beta1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol. 2012;302:F369-79.
-
(2012)
Am J Physiol Renal Physiol
, vol.302
-
-
Xiong, M.1
Jiang, L.2
Zhou, Y.3
-
72
-
-
78149459698
-
MiR-200b precursor can ameliorate renal tubulointerstitial fibrosis
-
21049046 10.1371/journal.pone.0013614
-
Oba S, Kumano S, Suzuki E, et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS ONE. 2010;5:e13614.
-
(2010)
PLoS ONE
, vol.5
, pp. 13614
-
-
Oba, S.1
Kumano, S.2
Suzuki, E.3
-
73
-
-
47249091921
-
The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2
-
18411277 10.1074/jbc.C800074200 1:CAS:528:DC%2BD1cXmtlynsbc%3D
-
Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910-4.
-
(2008)
J Biol Chem
, vol.283
, pp. 14910-14914
-
-
Korpal, M.1
Lee, E.S.2
Hu, G.3
Kang, Y.4
-
74
-
-
43049103824
-
The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1
-
18376396 10.1038/ncb1722 1:CAS:528:DC%2BD1cXltl2is7c%3D
-
Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593-601.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 593-601
-
-
Gregory, P.A.1
Bert, A.G.2
Paterson, E.L.3
-
75
-
-
84865017512
-
Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma
-
22766839 1:CAS:528:DC%2BC38XhtlWhurjL
-
Yamasaki T, Seki N, Yamada Y, et al. Tumor suppressive microRNA138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 2012;41:805-17.
-
(2012)
Int J Oncol
, vol.41
, pp. 805-817
-
-
Yamasaki, T.1
Seki, N.2
Yamada, Y.3
-
76
-
-
84861990869
-
Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: Role in epithelial-to-mesenchymal transition
-
21986943 10.1038/onc.2011.457 1:CAS:528:DC%2BC3MXht12hsrzO
-
Papadimitriou E, Vasilaki E, Vorvis C, et al. Differential regulation of the two RhoA-specific GEF isoforms Net1/Net1A by TGF-beta and miR-24: role in epithelial-to-mesenchymal transition. Oncogene. 2012;31:2862-75.
-
(2012)
Oncogene
, vol.31
, pp. 2862-2875
-
-
Papadimitriou, E.1
Vasilaki, E.2
Vorvis, C.3
-
77
-
-
84857147817
-
Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells
-
22363487 10.1371/journal.pone.0030771 1:CAS:528:DC%2BC38Xjt1Sns78%3D
-
Du R, Sun W, Xia L, et al. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells. PLoS ONE. 2012;7:e30771.
-
(2012)
PLoS ONE
, vol.7
, pp. 30771
-
-
Du, R.1
Sun, W.2
Xia, L.3
-
78
-
-
78650470110
-
MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382
-
20716515 10.1093/nar/gkq718 1:CAS:528:DC%2BC3cXhsFGrsrbK
-
Kriegel AJ, Fang Y, Liu Y, et al. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: a novel role of miR-382. Nucleic Acids Res. 2010;38:8338-47.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 8338-8347
-
-
Kriegel, A.J.1
Fang, Y.2
Liu, Y.3
-
79
-
-
77954274715
-
E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta
-
20393144 10.2337/db09-1736 1:CAS:528:DC%2BC3cXpsVOlsLo%3D
-
Wang B, Herman-Edelstein M, Koh P, et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta. Diabetes. 2010;59:1794-802.
-
(2010)
Diabetes
, vol.59
, pp. 1794-1802
-
-
Wang, B.1
Herman-Edelstein, M.2
Koh, P.3
-
80
-
-
77955611511
-
MiR-192 mediates TGF-beta/Smad3-driven renal fibrosis
-
10.1681/ASN.2010020134 1:CAS:528:DC%2BC3cXhtVyku73N
-
Chung AC, Huang XR, Meng X, Lan HY. miR-192 mediates TGF-beta/Smad3- driven renal fibrosis. J Am Soc Nephrol JASN. 2010;21:1317-25.
-
(2010)
J Am Soc Nephrol JASN
, vol.21
, pp. 1317-1325
-
-
Chung, A.C.1
Huang, X.R.2
Meng, X.3
Lan, H.Y.4
-
81
-
-
33847682663
-
MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors
-
17360662 10.1073/pnas.0611192104 1:CAS:528:DC%2BD2sXjtVWltLo%3D
-
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA. 2007;104:3432-7.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 3432-3437
-
-
Kato, M.1
Zhang, J.2
Wang, M.3
-
82
-
-
84855511123
-
Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl- proline: A blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors
-
10.1186/1755-1536-4-25 1:CAS:528:DC%2BC38Xjt1Krt70%3D
-
Kanasaki M, Nagai T, Kitada M, et al. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis & tissue repair. 2011;4:25.
-
(2011)
Fibrogenesis & Tissue Repair
, vol.4
, pp. 25
-
-
Kanasaki, M.1
Nagai, T.2
Kitada, M.3
-
83
-
-
84925946217
-
Antifibrotic treatment and other new strategies for improving renal outcomes
-
21659774 10.1159/000325671 1:CAS:528:DC%2BC38XlsFWgsg%3D%3D
-
Mathew A, Cunard R, Sharma K. Antifibrotic treatment and other new strategies for improving renal outcomes. Contrib Nephrol. 2011;170:217-27.
-
(2011)
Contrib Nephrol
, vol.170
, pp. 217-227
-
-
Mathew, A.1
Cunard, R.2
Sharma, K.3
-
84
-
-
25444463573
-
Endothelial/pericyte interactions
-
16166562 10.1161/01.RES.0000182903.16652.d7 1:CAS:528: DC%2BD2MXpvFGrtLg%3D
-
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005;97:512-23.
-
(2005)
Circ Res
, vol.97
, pp. 512-523
-
-
Armulik, A.1
Abramsson, A.2
Betsholtz, C.3
-
85
-
-
35948945337
-
Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts
-
17974953 10.1158/0008-5472.CAN-07-3127 1:CAS:528:DC%2BD2sXht1erur7N
-
Zeisberg EM, Potenta S, Xie L, et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123-8.
-
(2007)
Cancer Res
, vol.67
, pp. 10123-10128
-
-
Zeisberg, E.M.1
Potenta, S.2
Xie, L.3
-
86
-
-
33646384428
-
Fibroblasts in cancer
-
16572188 10.1038/nrc1877 1:CAS:528:DC%2BD28XjslGitLw%3D
-
Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392-401.
-
(2006)
Nat Rev Cancer
, vol.6
, pp. 392-401
-
-
Kalluri, R.1
Zeisberg, M.2
-
87
-
-
67849112665
-
Inhibition of TGF-beta signaling by miR-23b [abstract]
-
Shang H, Nitsche E, Jing X, et al. Inhibition of TGF-beta signaling by miR-23b [abstract]. J Am Soc Nephrol. 2008;19:143A.
-
(2008)
J Am Soc Nephrol
, vol.19
-
-
Shang, H.1
Nitsche, E.2
Jing, X.3
|