메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1012-1018

Towards discovering what patterns trigger what labels

Author keywords

[No Author keywords available]

Indexed keywords

ALTERNATING OPTIMIZATIONS; DATA OBJECTS; INPUT PATTERNS; INPUT SPACE; LEARNING FRAMEWORKS; MULTI-LABEL; MULTIPLE INSTANCES; MULTIPLE LABELS; OPTIMIZATION FORMULATIONS; REAL APPLICATIONS;

EID: 84868268151     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (33)
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 84863161940 scopus 로고    scopus 로고
    • Image categorization by learning and reasoning with regions
    • Y. Chen and J. Z. Wang. Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5:913-939, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 913-939
    • Chen, Y.1    Wang, J.Z.2
  • 7
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution
    • D. L. Donoho. For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7):907-934, 2006.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 8
    • 0032804927 scopus 로고    scopus 로고
    • The visual analysis of human movement: A survey
    • D.M. Gavrila. The visual analysis of human movement: A survey. Computer Vision and Image Understanding, 73(1):82-98, 1999.
    • (1999) Computer Vision and Image Understanding , vol.73 , Issue.1 , pp. 82-98
    • Gavrila, D.M.1
  • 16
    • 85162034192 scopus 로고    scopus 로고
    • Learning from candidate labeling sets
    • MIT Press, Cambridge, MA
    • J. Luo and F. Orabona. Learning from candidate labeling sets. In Advances in Neural Information Processing Systems 23, pages 1504-1512. MIT Press, Cambridge, MA, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 1504-1512
    • Luo, J.1    Orabona, F.2
  • 21
    • 0032142014 scopus 로고    scopus 로고
    • Environmental conditions and acoustic transduction in hands-free speech recognition
    • M. Omologo, P. Svaizer, and M. Matassoni. Environmental conditions and acoustic transduction in hands-free speech recognition. Speech Communication, 25(1-3):75-95, 1998.
    • (1998) Speech Communication , vol.25 , Issue.1-3 , pp. 75-95
    • Omologo, M.1    Svaizer, P.2    Matassoni, M.3
  • 22
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 23
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 26
    • 84863338235 scopus 로고    scopus 로고
    • Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora
    • MIT Press, Cambridge, MA
    • S.-H. Yang, H. Zha, and B.-G. Hu. Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora. In Advances in Neural Information Processing Systems 22, pages 2143-2150. MIT Press, Cambridge, MA, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 2143-2150
    • Yang, S.-H.1    Zha, H.2    Hu, B.-G.3
  • 28
    • 69249202332 scopus 로고    scopus 로고
    • MIMLRBF: RBF neural networks for multi-instance multi-label learning
    • M.-L. Zhang and Z.-J. Wang. MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing, 72(16-18):3951-3956, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3951-3956
    • Zhang, M.-L.1    Wang, Z.-J.2
  • 31
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • MIT Press, Cambridge, MA
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In Advances in Neural Information Processing Systems 19, pages 1609-1616. MIT Press, Cambridge, MA, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.19 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2
  • 32
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Z.-H. Zhou and M.-L. Zhang. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems, 11(2):155-170, 2007.
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.