-
1
-
-
84898946229
-
Support vector machines for multiple-instance learning
-
MIT Press, Cambridge, MA
-
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In Advances in Neural Information Processing Systems 15, pages 561-568. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 561-568
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
2
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
5
-
-
84863161940
-
Image categorization by learning and reasoning with regions
-
Y. Chen and J. Z. Wang. Image categorization by learning and reasoning with regions. Journal of Machine Learning Research, 5:913-939, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 913-939
-
-
Chen, Y.1
Wang, J.Z.2
-
6
-
-
33947180489
-
MILES: Multiple-instance learning via embedded instance selection
-
Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embedded instance selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):1931-1947, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
7
-
-
33744552752
-
For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution
-
D. L. Donoho. For most large underdetermined systems of equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59(7):907-934, 2006.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.7
, pp. 907-934
-
-
Donoho, D.L.1
-
8
-
-
0032804927
-
The visual analysis of human movement: A survey
-
D.M. Gavrila. The visual analysis of human movement: A survey. Computer Vision and Image Understanding, 73(1):82-98, 1999.
-
(1999)
Computer Vision and Image Understanding
, vol.73
, Issue.1
, pp. 82-98
-
-
Gavrila, D.M.1
-
9
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
Helsinki, Finland
-
C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings of the 25th International Conference on Machine Learning, pages 408-415, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 25th International Conference on Machine Learning
, pp. 408-415
-
-
Hsieh, C.J.1
Chang, K.W.2
Lin, C.J.3
Keerthi, S.S.4
Sundararajan, S.5
-
11
-
-
70450164149
-
Learning a distance metric from multi-instance multi-label data
-
Miami, FL
-
R. Jin, S. Wang, and Z.-H. Zhou. Learning a distance metric from multi-instance multi-label data. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 896-902, Miami, FL, 2009.
-
(2009)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 896-902
-
-
Jin, R.1
Wang, S.2
Zhou, Z.-H.3
-
13
-
-
70349967917
-
A convex method for locating regions of interest with multi-instance learning
-
Bled, Slovenia
-
Y.-F. Li, J. T. Kwok, I. W. Tsang, and Z.-H. Zhou. A convex method for locating regions of interest with multi-instance learning. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pages 15-30, Bled, Slovenia, 2009.
-
(2009)
Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
, pp. 15-30
-
-
Li, Y.-F.1
Kwok, J.T.2
Tsang, I.W.3
Zhou, Z.-H.4
-
15
-
-
80053145416
-
Multi-task feature learning via efficient 12, 1-norm minimization
-
Montreal, Canada
-
J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient 12, 1-norm minimization. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 339-348, Montreal, Canada, 2009.
-
(2009)
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
, pp. 339-348
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
16
-
-
85162034192
-
Learning from candidate labeling sets
-
MIT Press, Cambridge, MA
-
J. Luo and F. Orabona. Learning from candidate labeling sets. In Advances in Neural Information Processing Systems 23, pages 1504-1512. MIT Press, Cambridge, MA, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 1504-1512
-
-
Luo, J.1
Orabona, F.2
-
17
-
-
84898935332
-
A framework for multiple-instance learning
-
MIT Press, Cambridge, MA
-
O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In Advances in Neural Information Processing Systems 10, pages 570-576. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 570-576
-
-
Maron, O.1
Lozano-Pérez, T.2
-
21
-
-
0032142014
-
Environmental conditions and acoustic transduction in hands-free speech recognition
-
M. Omologo, P. Svaizer, and M. Matassoni. Environmental conditions and acoustic transduction in hands-free speech recognition. Speech Communication, 25(1-3):75-95, 1998.
-
(1998)
Speech Communication
, vol.25
, Issue.1-3
, pp. 75-95
-
-
Omologo, M.1
Svaizer, P.2
Matassoni, M.3
-
22
-
-
0033905095
-
BoosTexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. BoosTexter: A boosting-based system for text categorization. Machine Learning, 39(2-3):135-168, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 135-168
-
-
Schapire, R.E.1
Singer, Y.2
-
23
-
-
0002442796
-
Machine learning in automated text categorization
-
F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
-
(2002)
ACM Computing Surveys
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
25
-
-
0035440673
-
Simplicity: Semantics sensitive integrated matching for picture libraries
-
J. Z. Wang, J. Li, and G. Wiederhold. Simplicity: Semantics sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Learning, 23(9):947-963, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Learning
, vol.23
, Issue.9
, pp. 947-963
-
-
Wang, J.Z.1
Li, J.2
Wiederhold, G.3
-
26
-
-
84863338235
-
Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora
-
MIT Press, Cambridge, MA
-
S.-H. Yang, H. Zha, and B.-G. Hu. Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora. In Advances in Neural Information Processing Systems 22, pages 2143-2150. MIT Press, Cambridge, MA, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2143-2150
-
-
Yang, S.-H.1
Zha, H.2
Hu, B.-G.3
-
27
-
-
51949083216
-
Joint multi-label multi-instance learning for image classification
-
Anchorage, AL
-
Z.J. Zha, X.S. Hua, T. Mei, J. Wang, G.J. Qi, and Z. Wang. Joint multi-label multi-instance learning for image classification. In Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1-8, Anchorage, AL, 2008.
-
(2008)
Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Zha, Z.J.1
Hua, X.S.2
Mei, T.3
Wang, J.4
Qi, G.J.5
Wang, Z.6
-
28
-
-
69249202332
-
MIMLRBF: RBF neural networks for multi-instance multi-label learning
-
M.-L. Zhang and Z.-J. Wang. MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing, 72(16-18):3951-3956, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.16-18
, pp. 3951-3956
-
-
Zhang, M.-L.1
Wang, Z.-J.2
-
31
-
-
84864028262
-
Multi-instance multi-label learning with application to scene classification
-
MIT Press, Cambridge, MA
-
Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In Advances in Neural Information Processing Systems 19, pages 1609-1616. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1609-1616
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
-
32
-
-
33947396751
-
Solving multi-instance problems with classifier ensemble based on constructive clustering
-
Z.-H. Zhou and M.-L. Zhang. Solving multi-instance problems with classifier ensemble based on constructive clustering. Knowledge and Information Systems, 11(2):155-170, 2007.
-
(2007)
Knowledge and Information Systems
, vol.11
, Issue.2
, pp. 155-170
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
-
33
-
-
80955134248
-
Multi-instance multi-label learning
-
Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li. Multi-instance multi-label learning. Artificial Intelligence, 176(1):2291-2320, 2012.
-
(2012)
Artificial Intelligence
, vol.176
, Issue.1
, pp. 2291-2320
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
Huang, S.-J.3
Li, Y.-F.4
|