-
1
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
2
-
-
84866012143
-
Rank-loss support instance machines for miml instance annotation
-
Beijing, China
-
F. Briggs, X.Z. Fern, and R. Raich. Rank-loss support instance machines for miml instance annotation. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 534-542, Beijing, China, 2012.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 534-542
-
-
Briggs, F.1
Fern, X.Z.2
Raich, R.3
-
3
-
-
80052884721
-
Multi-label learning with incomplete class assignments
-
Spring, CO
-
S.S. Bucak, R. Jin, and A.K. Jain. Multi-label learning with incomplete class assignments. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2801- 2808, Spring, CO, 2011.
-
(2011)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 2801-2808
-
-
Bucak, S.S.1
Jin, R.2
Jain, A.K.3
-
4
-
-
70349453938
-
Transductive multiinstance multi-label learning algorithm with application to automatic image annotation
-
S. Feng and D. Xu. Transductive multiinstance multi-label learning algorithm with application to automatic image annotation. Expert Systems with Applications, 37(1):661-670, 2010.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.1
, pp. 661-670
-
-
Feng, S.1
Xu, D.2
-
5
-
-
84866035306
-
Multi-label hypothesis reuse
-
Beijing, China
-
S.-J. Huang, Y. Yu, and Z.-H. Zhou. Multi-label hypothesis reuse. In Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 525-533, Beijing, China, 2012.
-
(2012)
Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
, pp. 525-533
-
-
Huang, S.-J.1
Yu, Y.2
Zhou, Z.-H.3
-
6
-
-
70450164149
-
Learning a distance metric from multi-instance multi-label data
-
Miami, FL
-
R. Jin, S. Wang, and Z.-H. Zhou. Learning a distance metric from multi-instance multi-label data. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 896-902, Miami, FL, 2009.
-
(2009)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, pp. 896-902
-
-
Jin, R.1
Wang, S.2
Zhou, Z.-H.3
-
7
-
-
77951171251
-
MSRAMM 2.0: A large-scale web multimedia dataset
-
Miami, FL
-
H. Li, M. Wang, and X.-S. Hua. MSRAMM 2.0: A large-scale web multimedia dataset. In Proceedings of the 9th International Conference on Data Mining Workshops, pages 164-169, Miami, FL, 2009.
-
(2009)
Proceedings of the 9th International Conference on Data Mining Workshops
, pp. 164-169
-
-
Li, H.1
Wang, M.2
Hua, X.-S.3
-
8
-
-
71149093081
-
Semisupervised learning using label mean
-
Montreal, Canada
-
Y.-F. Li, J.T. Kwok, and Z.-H. Zhou. Semisupervised learning using label mean. In Proceedings of the 26th International Conference on Machine Learning, pages 633-640, Montreal, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 633-640
-
-
Li, Y.-F.1
Kwok, J.T.2
Zhou, Z.-H.3
-
9
-
-
77953193733
-
Drosophila gene expression pattern annotation through multi-instance multi-label learning
-
Pasadena, CA
-
Y.-X. Li, S. Ji, S. Kumar, J. Ye, and Z.- H. Zhou. Drosophila gene expression pattern annotation through multi-instance multi-label learning. In Proceedings of the 21st International Joint Conference on Artificial Intelligence, pages 1445-1450, Pasadena, CA, 2009.
-
(2009)
Proceedings of the 21st International Joint Conference on Artificial Intelligence
, pp. 1445-1450
-
-
Li, Y.-X.1
Ji, S.2
Kumar, S.3
Ye, J.4
Zhou, Z.-H.5
-
10
-
-
84868268151
-
Towards discovering what patterns trigger what labels
-
Toronto, Canada
-
Y.-F. Li, J.-H. Hu, Y. Jiang, and Z.-H. Zhou. Towards discovering what patterns trigger what labels. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, pages 1012-1018, Toronto, Canada, 2012.
-
(2012)
Proceedings of the 26th AAAI Conference on Artificial Intelligence
, pp. 1012-1018
-
-
Li, Y.-F.1
Hu, J.-H.2
Jiang, Y.3
Zhou, Z.-H.4
-
11
-
-
78149306870
-
Building text classifiers using positive and unlabeled examples
-
Melbourne, FL
-
B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using positive and unlabeled examples. In Proceedings of the 3rd IEEE International Conference on Data Mining, pages 179-188, Melbourne, FL, 2003.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining
, pp. 179-188
-
-
Liu, B.1
Dai, Y.2
Li, X.3
Lee, W.S.4
Yu, P.S.5
-
12
-
-
84898935332
-
A framework for multiple-instance learning
-
M. I. Jordan, M. J. Kearns, and S. A. Solla, editors. MIT Press, Cambridge, MA
-
O. Maron and T. Lozano- Pérez. A framework for multiple-instance learning. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 570-576. MIT Press, Cambridge, MA, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 570-576
-
-
Maron, O.1
Lozano-Pérez, T.2
-
14
-
-
0002442796
-
Machine learning in automated text categorization
-
F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
-
(2002)
ACM Computing Surveys
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
16
-
-
77958587970
-
Multi-label learning with weak label
-
Atlanta, GA
-
Y.-Y. Sun, Y. Zhang, and Z.-H. Zhou. Multi-label learning with weak label. In Proceedings of the 24th AAAI Conference on Artificial Intelligence, pages 593-598, Atlanta, GA, 2010.
-
(2010)
Proceedings of the 24th AAAI Conference on Artificial Intelligence
, pp. 593-598
-
-
Sun, Y.-Y.1
Zhang, Y.2
Zhou, Z.-H.3
-
17
-
-
0035533631
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of optimization theory and applications, 109(3):475-494, 2001.
-
(2001)
Journal of Optimization Theory and Applications
, vol.109
, Issue.3
, pp. 475-494
-
-
Tseng, P.1
-
18
-
-
0035440673
-
Simplicity: Semantics-sensitive integrated matching for picture libraries
-
J.Wang, J. Li, and G.Wiederholdy. Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(9):947-963, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.9
, pp. 947-963
-
-
Wang, J.1
Li, J.2
Wiederholdy, G.3
-
19
-
-
84871364027
-
Semi-supervised multi-instance multi-label learning for video annotation task
-
Nara, Japan
-
X.-S. Xu, Y. Jiang, X. Xue, and Z.-H. Zhou. Semi-supervised multi-instance multi-label learning for video annotation task. In Proceedings of the 20th ACM Multimedia Conference, pages 737-740, Nara, Japan, 2012.
-
(2012)
Proceedings of the 20th ACM Multimedia Conference
, pp. 737-740
-
-
Xu, X.-S.1
Jiang, Y.2
Xue, X.3
Zhou, Z.-H.4
-
20
-
-
84863338235
-
Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora
-
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors. MIT Press, Cambridge, MA
-
S.-H. Yang, H. Zha, and B.-G. Hu. Dirichlet-bernoulli alignment: A generative model for multi-class multi-label multi-instance corpora. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 2143-2150. MIT Press, Cambridge, MA, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 2143-2150
-
-
Yang, S.-H.1
Zha, H.2
Hu, B.-G.3
-
21
-
-
51949083216
-
Joint multi-label multi-instance learning for image classification
-
Anchorage, AL
-
Z.-J. Zha, X.-S. Hua, T. Mei, J. Wang, G.- J. Qi, and Z. Wang. Joint multi-label multi-instance learning for image classification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Anchorage, AL, 2008.
-
(2008)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
-
Zha, Z.-J.1
Hua, X.-S.2
Mei, T.3
Wang, J.4
Qi, G.-J.5
Wang, Z.6
-
22
-
-
69249202332
-
MIMLRBF: RBF neural networks for multi-instance multi-label learning
-
M.-L. Zhang and Z.-J. Wang. MIMLRBF: RBF neural networks for multi-instance multi-label learning. Neurocomputing, 72(16-18):3951-3956, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.16-18
, pp. 3951-3956
-
-
Zhang, M.-L.1
Wang, Z.-J.2
-
23
-
-
84864028262
-
Multi-instance multi-label learning with application to scene classification
-
B. Schölkopf, J. Platt, and T. Hoffman, editors. MIT Press, Cambridge, MA
-
Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to scene classification. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 1609-1616. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1609-1616
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
-
24
-
-
80955134248
-
Multi-instance multi-label learning
-
Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li. Multi-instance multi-label learning. Artificial Intelligence, 176(1):2291-2320, 2012.
-
(2012)
Artificial Intelligence
, vol.176
, Issue.1
, pp. 2291-2320
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
Huang, S.-J.3
Li, Y.-F.4
|