ARTICLE;
CELL MEMBRANE PERMEABILITY;
CONTROLLED STUDY;
DRUG HALF LIFE;
DRUG METABOLISM;
DRUG PENETRATION;
DRUG POTENCY;
DRUG PROTEIN BINDING;
DRUG SOLUBILITY;
DRUG STABILITY;
ENZYME INHIBITION;
HIGH THROUGHPUT SCREENING;
HUMAN;
IC 50;
IN VITRO STUDY;
LIVER MICROSOME METABOLISM;
OXIDATION REDUCTION REACTION;
STRUCTURE ACTIVITY RELATION;
PHOSPHORIC DIESTER HYDROLASES;
PYRIMIDINONES;
STRUCTURE-ACTIVITY RELATIONSHIP;
TOPOISOMERASE II INHIBITORS;
TRIAZINES;
Generation of assays and antibodies to facilitate the study of human 5′-tyrosyl DNA phosphodiesterase
Thomson, G.; Watson, A.; Caldecott, K.; Denneny, O.; Depledge, P.; Hamilton, N.; Hopkins, G.; Jordan, A.; Morrow, C.; Raoof, A.; Waddell, I.; Ogilvie, D. Generation of assays and antibodies to facilitate the study of human 5′-tyrosyl DNA phosphodiesterase Anal. Biochem. 2013, 436, 145-150
A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage
Cortes Ledesma, F.; El Khamisy, S. F.; Zuma, M. C.; Osborn, K.; Caldecott, K. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage Nature 2009, 461, 674-678
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
Moore, J. K.; Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae Mol. Cell. Biol. 1996, 16, 2164-2173
Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase
Wei, H.; Ruthenburg, A. J.; Bechis, S. K.; Verdine, G. L. Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase J. Biol. Chem. 2005, 280, 37041-37047
Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide
Wu, C.; Li, T.; Farh, L.; Lin, L.; Lin, T.; Yu, Y.; Yen, T.; Chiang, C.; Chan, N. Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide Science 2011, 333, 459-462
Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase i complexes
Pouliot, J. J.; Yao, K. C.; Robertson, C. A.; Nash, H. A. Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes Science 1999, 286, 552-555
The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA
Wilson, D. M., III; Barsky, D. The major human abasic endonuclease: Formation, consequences and repair of abasic lesions in DNA Mutat. Res. 2001, 485, 283-307
5-Arylidenethioxothiazolidinones as Inhibitors of Tyrosyl-DNA Phosphodiesterase i
Sirivolu, V. R.; Kumar, S.; Vernekar, V.; Marchand, C.; Naumova, A.; Cherugi, A.; Renaud, A.; Stephen, A. G.; Chen, F.; Sham, Y. Y.; Pommier, Y.; Wang, Z. 5-Arylidenethioxothiazolidinones as Inhibitors of Tyrosyl-DNA Phosphodiesterase I J. Med. Chem. 2012, 55, 8671-8684
Antibiotics. I. Synthesis of 1,6-Dimethyl-5,7-dioxo-1,5,6,7- tetrahydropyrimido [5,4- e ] as -triazine (toxoflavin) and related Compounds
Daves, G. D.; Robins, R. K.; Cheng, C. C. Antibiotics. I. Synthesis of 1,6-Dimethyl-5,7-dioxo-1,5,6,7-tetrahydropyrimido [5,4- e ] as -triazine (toxoflavin) and related Compounds J. Am. Chem. Soc. 1962, 84, 1724-1729
Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo
Wei, W.; Chua, M.-S.; Grepper, S.; So, S. Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo Int. J. Cancer 2010, 126, 2426-2436
Showalter, H. D.; Turbiak, A. J.; Fearon, E. R.; Bommer, G. T. Pyrimidotriazinediones and pyrimidopyrimidinediones and methods of using the same. International Patent WO 2011166144, 2010.
Petry, S.; Barimghaus, K.-H.; Tennagels, N.; Guenter, M. Pyrimido[5,4-e][1,2,4]triazine-5,7-diones, methods for producing the same and their use. International Patent WO 20047737144, 2004.
Lacrampe, J. F.; Connors, R. W.; Ho, C. Y.; Richardson, A.; Freyne, E. J.; Buijnsters, P. J.; Bakker, A. N. 3-furanyl analogs of toxoflavine as kinase inhibitors. International Patent WO 20047241763, 2004.
Weissman, A. M.; Vousden, K. H.; Jensen, J. P.; Yang, Y.; Fang, S.; Woods, D.; Kenten, J. H.; Davydov, L.; Safiran, Y. J.; Oberoi, P. Deazaflavin compounds and methods of use thereof. International Patent WO 2004073615 A2 20040902, 2004.
Microwave-assisted synthesis of 3-aryl-pyrimido[5,4- e ][1,2,4]triazine-5,7(1 H,6 H)-dione libraries: Derivatives of toxoflavin
Todorovic, N.; Giacomelli, A.; Hassell, J. A.; Frampton, C. S.; Capretta, A. Microwave-assisted synthesis of 3-aryl-pyrimido[5,4- e ][1,2,4]triazine-5, 7(1 H,6 H)-dione libraries: derivatives of toxoflavin Tetrahedron Lett. 2010, 51, 6037-6040
Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors
Prins, L. H. A.; Petzer, J. P.; Malan, S. F. Synthesis and in vitro evaluation of pteridine analogues as monoamine oxidase B and nitric oxide synthase inhibitors Bioorg. Med. Chem. 2009, 17, 7523-7530
Reassignment of the structure of the antibiotic A53868 reveals an unusual amino dehydrophosphonic acid
Whitteck, J. T.; Ni, W.; Griffin, B. M.; Eliot, A. C.; Thomas, P. M.; Kelleher, N. L.; Metcalf, W. W.; van der Donk, W. A. Reassignment of the structure of the antibiotic A53868 reveals an unusual amino dehydrophosphonic acid Angew. Chem., Int. Ed. 2007, 46, 9089-9092
Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1)
Bey, E.; Marchais-Oberwinkler, S.; Werth, R.; Negri, M.; Al-Soud, Y. A.; Kruchten, P.; Oster, A.; Frotscher, M.; Birk, B.; Hartmann, R. W. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) J. Med. Chem. 2008, 51, 6725-6739
King, J. A.; Keown, J.; McIlroy, J. W.; Armstrong, W. P.; McKervey, M. A.; McMordie, A. Di-steroidal prodrugs of estradiol. U.S. Patent US 20050159399 A1 20050721, 2005.
A new class of small molecule RNA polymerase inhibitors with activity against Rifampicin-resistant Staphylococcus aureus
Arhin, F.; Bélanger, O.; Ciblat, S.; Dehbi, M.; Delorme, D.; Dietrich, E.; Dixit, D.; Lafontaine, Y.; Lehoux, D.; Liu, J.; McKay, G. A.; Moeck, G.; Reddy, R.; Rose, Y.; Srikumar, R.; Tanaka, K. S. E.; Williams, D. M.; Gros, P.; Pelletier, J.; Parr, T. R., Jr.; Far, A. R. A new class of small molecule RNA polymerase inhibitors with activity against Rifampicin-resistant Staphylococcus aureus Bioorg. Med. Chem. 2006, 14, 5812-5832
Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells
Wilson, J. M.; Henderson, G.; Black, F.; Sutherland, A.; Ludwig, R. L.; Vousden, K. H.; Robins, D. J. Synthesis of 5-deazaflavin derivatives and their activation of p53 in cells Bioorg. Med. Chem. 2007, 15 (1) 77-86
Irreversible enzyme inhibitors. CXXI. Thymidine phosphorylase. 9. Nature and dimensions of the hydrophobic bonding region
Baker, B. R.; Rzeszotarski, W. Irreversible enzyme inhibitors. CXXI. Thymidine phosphorylase. 9. Nature and dimensions of the hydrophobic bonding region J. Med. Chem. 1968, 11, 639-644
Inhibitors of Bacillus subtilis DNA polymerase III. 6-Anilinouracils and 6-(alkylamino)uracils
Wright, G. E.; Brown, N. C. Inhibitors of Bacillus subtilis DNA polymerase III. 6-Anilinouracils and 6-(alkylamino)uracils J. Med. Chem. 1980, 23, 34-38
Quantitative structure-activity relationships of 6-anilinouracils as inhibitors of Bacillus subtilis DNA polymerase III
Wright, G. E.; Gambino, J. J. Quantitative structure-activity relationships of 6-anilinouracils as inhibitors of Bacillus subtilis DNA polymerase III J. Med. Chem. 1984, 27, 181-185
McCaffrey, R.; Wright, G.; Baril, E. F. Composition and method for inhibiting terminal deoxyribonucleotidyl transferase activity in cancer chemotherapy. U.S. Patent 4,576,948 A, 1986.
Coenzyme models. 47. Synthesis and reactivity studies of novel flavinophanes and 5-deazaflavinophanes: Correlation between flavin reactivity and ring strain
Shinkai, S.; Kawase, A.; Yamaguchi, T.; Manabe, O.; Wada, Y.; Yoneda, F.; Ohta, Y.; Nishimoto, K. Coenzyme models. 47. Synthesis and reactivity studies of novel flavinophanes and 5-deazaflavinophanes: correlation between flavin reactivity and ring strain J. Am. Chem. Soc. 1989, 111, 4928-4935
Synthesis of new deazaflavins with planar chirality. Redox-induced "rope-skipping" racemization
Shinkai, S.; Yamaguchi, T.; Nakao, H.; Manabe, O. Synthesis of new deazaflavins with planar chirality. Redox-induced "rope-skipping" racemization Tetrahedron Lett. 1986, 27, 1611-1614
Brown, N. C.; Barnes, M. H.; Wright, G. E. Compounds destabilizing the zinc finger of the dnaE protein of Gram-positive bacteria and their use as antibiotics. International Patent WO 2000020556 A2, 2000.
A fluorescence based assay for the AP-site cleavage activity of human tyrosyl DNA phosphodiesterase 1
Thomson, G. J.; Hamilton, N. S.; Hopkins, G. V.; Waddell, I. D.; Watson, A. J.; Ogilvie, D. J. A fluorescence based assay for the AP-site cleavage activity of human tyrosyl DNA phosphodiesterase 1 Anal. Biochem. 2013, 440, 1-5
Calculated log P determined using Dotmatics software.
Calculated log P determined using Dotmatics software (www.dotmatics.com).
46
84883201451
Schrödinger Suite 2012, Schrödinger, LLC, New York, NY.
Schrödinger Suite 2012, Schrödinger, LLC, New York, NY, 2012.
(2012)
47
84883203311
TorchV10, part of the Cresset software package
TorchV10, part of the Cresset software package, http://www.cresset-group. com/products/torch/
48
84883178381
SparkV10, part of the Cresset software package, The Spark uses a fragment database to suggest replacements for a user defined scaffold in order to identify moieties that reproduce the shape and electrostatic and hydrophobic properties of the parent compound.
SparkV10, part of the Cresset software package, www.cresset-group.com/ products/spark/. The Spark uses a fragment database to suggest replacements for a user defined scaffold in order to identify moieties that reproduce the shape and electrostatic and hydrophobic properties of the parent compound.
49
77952545106
Apparent activity in high-throughput screening: Origins of compound-dependent assay interference
Thorne, N.; Auld, D. S.; Inglese, J. Apparent activity in high-throughput screening: Origins of compound-dependent assay interference Curr. Opin. Chem. Biol. 2010, 14, 315-324
Mechanism of repair of 5′-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2
Schellenberg, M. J.; Appel, C. D.; Adhikari, S.; Robertson, P. D.; Ramsden, D. A.; Williams, R. S. Mechanism of repair of 5′-topoisomerase II-DNA adducts by mammalian tyrosyl-DNA phosphodiesterase 2 Nat. Struct. Mol. Biol. 2012, 19, 1363-1371
Structural basis for recognition of 5′-phosphotyrosine adducts by Tdp2
Shi, K.; Kurahashi, R. G.; Tsutakawa, S. E.; Tainer, J. A.; Pommier, Y.; Aihara, H. Structural basis for recognition of 5′-phosphotyrosine adducts by Tdp2 Nat. Struct. Mol. Biol. 2012, 19, 1372-1377
General syntheses of 1-alkyltoxoflavin and 8-alkylfervenulin derivatives of biological significance by the regioselective alkylation of reumycin derivatives and the rates of transalkylation from 1-alkyltoxoflavins into nucleophiles
Nagamatsu, T.; Yamasaki, H. General syntheses of 1-alkyltoxoflavin and 8-alkylfervenulin derivatives of biological significance by the regioselective alkylation of reumycin derivatives and the rates of transalkylation from 1-alkyltoxoflavins into nucleophiles J. Chem. Soc., Perkin Trans. 2001, 1, 130-137