메뉴 건너뛰기




Volumn 105, Issue 3, 2013, Pages 776-782

Mechanism of how salt-gradient-induced charges affect the translocation of DNA molecules through a nanopore

Author keywords

[No Author keywords available]

Indexed keywords

DNA; INORGANIC SALT; POTASSIUM;

EID: 84881461911     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2013.05.065     Document Type: Article
Times cited : (47)

References (27)
  • 1
    • 4143057920 scopus 로고    scopus 로고
    • Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores
    • P. Chen, and T. Mitsui D. Branton Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores Nano Lett. 4 2004 1333 1337
    • (2004) Nano Lett. , vol.4 , pp. 1333-1337
    • Chen, P.1    Mitsui, T.2    Branton, D.3
  • 2
    • 34248351114 scopus 로고    scopus 로고
    • Solid-state nanopores
    • C. Dekker Solid-state nanopores Nat. Nanotechnol. 2 2007 209 215
    • (2007) Nat. Nanotechnol. , vol.2 , pp. 209-215
    • Dekker, C.1
  • 3
    • 0032762996 scopus 로고    scopus 로고
    • Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules
    • M. Akeson, and D. Branton D.W. Deamer Microsecond timescale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules Biophys. J. 77 1999 3227 3233
    • (1999) Biophys. J. , vol.77 , pp. 3227-3233
    • Akeson, M.1    Branton, D.2    Deamer, D.W.3
  • 4
    • 9644273841 scopus 로고    scopus 로고
    • Probing single DNA molecule transport using fabricated nanopores
    • P. Chen, and J. Gu D. Branton Probing single DNA molecule transport using fabricated nanopores Nano Lett. 4 2004 2293 2298
    • (2004) Nano Lett. , vol.4 , pp. 2293-2298
    • Chen, P.1    Gu, J.2    Branton, D.3
  • 5
    • 0030465241 scopus 로고    scopus 로고
    • Characterization of individual polynucleotide molecules using a membrane channel
    • J.J. Kasianowicz, and E. Brandin D.W. Deamer Characterization of individual polynucleotide molecules using a membrane channel Proc. Natl. Acad. Sci. USA 93 1996 13770 13773
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 13770-13773
    • Kasianowicz, J.J.1    Brandin, E.2    Deamer, D.W.3
  • 6
    • 0033980542 scopus 로고    scopus 로고
    • Rapid nanopore discrimination between single polynucleotide molecules
    • A. Meller, and L. Nivon D. Branton Rapid nanopore discrimination between single polynucleotide molecules Proc. Natl. Acad. Sci. USA 97 2000 1079 1084
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 1079-1084
    • Meller, A.1    Nivon, L.2    Branton, D.3
  • 7
    • 0035831563 scopus 로고    scopus 로고
    • Voltage-driven DNA translocations through a nanopore
    • A. Meller, L. Nivon, and D. Branton Voltage-driven DNA translocations through a nanopore Phys. Rev. Lett. 86 2001 3435 3438
    • (2001) Phys. Rev. Lett. , vol.86 , pp. 3435-3438
    • Meller, A.1    Nivon, L.2    Branton, D.3
  • 8
    • 0036797062 scopus 로고    scopus 로고
    • Characterization of nucleic acids by nanopore analysis
    • D.W. Deamer, and D. Branton Characterization of nucleic acids by nanopore analysis Acc. Chem. Res. 35 2002 817 825
    • (2002) Acc. Chem. Res. , vol.35 , pp. 817-825
    • Deamer, D.W.1    Branton, D.2
  • 9
    • 16244377077 scopus 로고    scopus 로고
    • Electronic signature of DNA nucleotides via transverse transport
    • M. Zwolak, and M. Di Ventra Electronic signature of DNA nucleotides via transverse transport Nano Lett. 5 2005 421 424
    • (2005) Nano Lett. , vol.5 , pp. 421-424
    • Zwolak, M.1    Di Ventra, M.2
  • 10
    • 33646400831 scopus 로고    scopus 로고
    • Fast DNA sequencing via transverse electronic transport
    • J. Lagerqvist, M. Zwolak, and M. Di Ventra Fast DNA sequencing via transverse electronic transport Nano Lett. 6 2006 779 782
    • (2006) Nano Lett. , vol.6 , pp. 779-782
    • Lagerqvist, J.1    Zwolak, M.2    Di Ventra, M.3
  • 11
    • 53649108801 scopus 로고    scopus 로고
    • The potential and challenges of nanopore sequencing
    • D. Branton, and D.W. Deamer J.A. Schloss The potential and challenges of nanopore sequencing Nat. Biotechnol. 26 2008 1146 1153
    • (2008) Nat. Biotechnol. , vol.26 , pp. 1146-1153
    • Branton, D.1    Deamer, D.W.2    Schloss, J.A.3
  • 12
    • 38049138721 scopus 로고    scopus 로고
    • Colloquium: Physical approaches to DNA sequencing and detection
    • M. Zwolak, and M. Di Ventra Colloquium: physical approaches to DNA sequencing and detection Rev. Mod. Phys. 80 2008 141 165
    • (2008) Rev. Mod. Phys. , vol.80 , pp. 141-165
    • Zwolak, M.1    Di Ventra, M.2
  • 13
    • 84862546248 scopus 로고    scopus 로고
    • DNA capture in nanopore for genome sequencing: Challenges and opportunities
    • Y. He, and M. Tsutsui T. Kawai DNA capture in nanopore for genome sequencing: challenges and opportunities J. Mater. Chem. 22 2012 13423 13427
    • (2012) J. Mater. Chem. , vol.22 , pp. 13423-13427
    • He, Y.1    Tsutsui, M.2    Kawai, T.3
  • 14
    • 76649116514 scopus 로고    scopus 로고
    • Electrostatic focusing of unlabeled DNA into nanoscale pores using a salt gradient
    • M. Wanunu, and W. Morrison A. Meller Electrostatic focusing of unlabeled DNA into nanoscale pores using a salt gradient Nat. Nanotechnol. 5 2010 160 165
    • (2010) Nat. Nanotechnol. , vol.5 , pp. 160-165
    • Wanunu, M.1    Morrison, W.2    Meller, A.3
  • 15
    • 79961116591 scopus 로고    scopus 로고
    • Translocation of DNA molecules through nanopores with salt gradients: The role of osmotic flow
    • M.M. Hatlo, D. Panja, and R. van Roij Translocation of DNA molecules through nanopores with salt gradients: the role of osmotic flow Phys. Rev. Lett. 107 2011 068101
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 068101
    • Hatlo, M.M.1    Panja, D.2    Van Roij, R.3
  • 16
    • 0016560160 scopus 로고
    • Access resistance of a small circular pore
    • J.E. Hall Access resistance of a small circular pore J. Gen. Physiol. 66 1975 531 532
    • (1975) J. Gen. Physiol. , vol.66 , pp. 531-532
    • Hall, J.E.1
  • 17
    • 84860357315 scopus 로고    scopus 로고
    • Single-nanoparticle detection using a low-aspect-ratio pore
    • M. Tsutsui, and S. Hongo T. Kawai Single-nanoparticle detection using a low-aspect-ratio pore ACS Nano 6 2012 3499 3505
    • (2012) ACS Nano , vol.6 , pp. 3499-3505
    • Tsutsui, M.1    Hongo, S.2    Kawai, T.3
  • 18
    • 34547339162 scopus 로고    scopus 로고
    • Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore
    • S. Ghosal Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore Phys. Rev. Lett. 98 2007 238104
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 238104
    • Ghosal, S.1
  • 19
    • 79961044530 scopus 로고    scopus 로고
    • Controlling DNA translocation through gate modulation of nanopore wall surface charges
    • Y. He, and M. Tsutsui T. Kawai Controlling DNA translocation through gate modulation of nanopore wall surface charges ACS Nano 5 2011 5509 5518
    • (2011) ACS Nano , vol.5 , pp. 5509-5518
    • He, Y.1    Tsutsui, M.2    Kawai, T.3
  • 20
    • 34247644060 scopus 로고    scopus 로고
    • Polymer capture by electro-osmotic flow of oppositely charged nanopores
    • C.T.A. Wong, and M. Muthukumar Polymer capture by electro-osmotic flow of oppositely charged nanopores J. Chem. Phys. 126 2007 164903
    • (2007) J. Chem. Phys. , vol.126 , pp. 164903
    • Wong, C.T.A.1    Muthukumar, M.2
  • 21
    • 77952997269 scopus 로고    scopus 로고
    • Theory of capture rate in polymer translocation
    • M. Muthukumar Theory of capture rate in polymer translocation J. Chem. Phys. 132 2010 195101
    • (2010) J. Chem. Phys. , vol.132 , pp. 195101
    • Muthukumar, M.1
  • 22
    • 80055020968 scopus 로고    scopus 로고
    • Gate manipulation of DNA capture into nanopores
    • Y. He, and M. Tsutsui T. Kawai Gate manipulation of DNA capture into nanopores ACS Nano 5 2011 8391 8397
    • (2011) ACS Nano , vol.5 , pp. 8391-8397
    • He, Y.1    Tsutsui, M.2    Kawai, T.3
  • 23
    • 77957322357 scopus 로고    scopus 로고
    • Field effect regulation of DNA translocation through a nanopore
    • Y. Ai, and J. Liu S. Qian Field effect regulation of DNA translocation through a nanopore Anal. Chem. 82 2010 8217 8225
    • (2010) Anal. Chem. , vol.82 , pp. 8217-8225
    • Ai, Y.1    Liu, J.2    Qian, S.3
  • 24
    • 78149402689 scopus 로고    scopus 로고
    • DNA capture into a nanopore: Interplay of diffusion and electrohydrodynamics
    • A.Y. Grosberg, and Y. Rabin DNA capture into a nanopore: interplay of diffusion and electrohydrodynamics J. Chem. Phys. 133 2010 165102
    • (2010) J. Chem. Phys. , vol.133 , pp. 165102
    • Grosberg, A.Y.1    Rabin, Y.2
  • 25
    • 27544493173 scopus 로고    scopus 로고
    • Stretching DNA using the electric field in a synthetic nanopore
    • J.B. Heng, and A. Aksimentiev G. Timp Stretching DNA using the electric field in a synthetic nanopore Nano Lett. 5 2005 1883 1888
    • (2005) Nano Lett. , vol.5 , pp. 1883-1888
    • Heng, J.B.1    Aksimentiev, A.2    Timp, G.3
  • 26
    • 77958593282 scopus 로고    scopus 로고
    • Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix
    • U. Mirsaidov, and J. Comer G. Timp Slowing the translocation of double-stranded DNA using a nanopore smaller than the double helix Nanotechnology 21 2010 395501
    • (2010) Nanotechnology , vol.21 , pp. 395501
    • Mirsaidov, U.1    Comer, J.2    Timp, G.3
  • 27
    • 31544471731 scopus 로고    scopus 로고
    • Salt dependence of ion transport and DNA translocation through solid-state nanopores
    • R.M.M. Smeets, and U.F. Keyser C. Dekker Salt dependence of ion transport and DNA translocation through solid-state nanopores Nano Lett. 6 2006 89 95
    • (2006) Nano Lett. , vol.6 , pp. 89-95
    • Smeets, R.M.M.1    Keyser, U.F.2    Dekker, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.