-
1
-
-
9244252182
-
DNA electronics
-
Nalwa, H. S., Ed.; American Scientific Publishers: New York
-
For a recent review, see, e.g., Di Ventra, M.; Zwolak, M. DNA Electronics in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H. S., Ed.; American Scientific Publishers: New York, 2004, Vol. 2, p 475. See also Introduction to Nanoscale Science and Technology, Di Ventra, M., Evoy, S., Heflin, R., Eds.; Kluwer Academics: New York, 2004.
-
(2004)
Encyclopedia of Nanoscience and Nanotechnology
, vol.2
, pp. 475
-
-
Di Ventra, M.1
Zwolak, M.2
-
2
-
-
16244372190
-
-
Kluwer Academics: New York
-
For a recent review, see, e.g., Di Ventra, M.; Zwolak, M. DNA Electronics in Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H. S., Ed.; American Scientific Publishers: New York, 2004, Vol. 2, p 475. See also Introduction to Nanoscale Science and Technology, Di Ventra, M., Evoy, S., Heflin, R., Eds.; Kluwer Academics: New York, 2004.
-
(2004)
Introduction to Nanoscale Science and Technology
-
-
Di Ventra, M.1
Evoy, S.2
Heflin, R.3
-
3
-
-
0242363184
-
-
Boon, E. M.; Livingston, A. L.; Chmiel, N. H.; David, S. S.; Barton, J. K. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 12543.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 12543
-
-
Boon, E.M.1
Livingston, A.L.2
Chmiel, N.H.3
David, S.S.4
Barton, J.K.5
-
4
-
-
1842763027
-
-
Endres, R. G.; Cox, D. L.; Singh, R. R. P. Rev. Mod. Phys. 2004, 76, 195.
-
(2004)
Rev. Mod. Phys.
, vol.76
, pp. 195
-
-
Endres, R.G.1
Cox, D.L.2
Singh, R.R.P.3
-
6
-
-
0035110550
-
-
Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Acc. Chem. Res. 2001, 34, 159.
-
(2001)
Acc. Chem. Res.
, vol.34
, pp. 159
-
-
Lewis, F.D.1
Letsinger, R.L.2
Wasielewski, M.R.3
-
9
-
-
0036144020
-
-
Berlin, Y. A.; Burin, A. L.; Ratner, M. A. Chem. Phys. 2002, 275, 61.
-
(2002)
Chem. Phys.
, vol.275
, pp. 61
-
-
Berlin, Y.A.1
Burin, A.L.2
Ratner, M.A.3
-
13
-
-
0037124221
-
-
Grozema, F. C.; Siebbeles, L. D. A.; Berlin, Y. A.; Ratner, M. A. Chem. Phys. Chem. 2002, 3, 536.
-
(2002)
Chem. Phys. Chem.
, vol.3
, pp. 536
-
-
Grozema, F.C.1
Siebbeles, L.D.A.2
Berlin, Y.A.3
Ratner, M.A.4
-
14
-
-
0042547743
-
-
Tao, N. J.; DeRose, J. A.; Lindsay, S. M. J. Phys. Chem. 1993, 97, 910.
-
(1993)
J. Phys. Chem.
, vol.97
, pp. 910
-
-
Tao, N.J.1
Derose, J.A.2
Lindsay, S.M.3
-
16
-
-
0034297560
-
-
Hamai, C.; Tanaka, H.; Kawai, T. J. Phys. Chem. B 2000, 104, 9894.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 9894
-
-
Hamai, C.1
Tanaka, H.2
Kawai, T.3
-
17
-
-
0032677161
-
-
Tanaka, H.; Hamai, C.; Kanno, T.; Kawai, T. Surf. Sci. 1999, 432, L611.
-
(1999)
Surf. Sci.
, vol.432
-
-
Tanaka, H.1
Hamai, C.2
Kanno, T.3
Kawai, T.4
-
18
-
-
0035972783
-
-
Wang, H. D.; Tang, Z. Y.; Li, Z.; Wang, E. K. Surf. Sci. 2001, 480, L389.
-
(2001)
Surf. Sci.
, vol.480
-
-
Wang, H.D.1
Tang, Z.Y.2
Li, Z.3
Wang, E.K.4
-
19
-
-
0032762996
-
-
Akeson, M.; Branton, D.; Kasianowicz, J. J.; Brandin, E.; Deamer, D. W. Biophys. J. 1999, 77, 3227.
-
(1999)
Biophys. J.
, vol.77
, pp. 3227
-
-
Akeson, M.1
Branton, D.2
Kasianowicz, J.J.3
Brandin, E.4
Deamer, D.W.5
-
20
-
-
16244388060
-
-
Li, J.; Gershow, M.; Stein, D.; Brandin, E.; Golovchenko, J. A. Nat. Mater. 2003, 2, 811.
-
(2003)
Nat. Mater.
, vol.2
, pp. 811
-
-
Li, J.1
Gershow, M.2
Stein, D.3
Brandin, E.4
Golovchenko, J.A.5
-
22
-
-
0035938309
-
-
Rochefort, A.; Di Ventra, M.; Avouris, Ph. Appl. Phys. Lett. 2001, 78, 2521.
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 2521
-
-
Rochefort, A.1
Di Ventra, M.2
Avouris, Ph.3
-
23
-
-
0346246276
-
-
and references therein
-
As in previous calculations in similar structures (see, e.g., Di Ventra, M.; Pantelides, S. T.; Lang, N. D. Phys. Rev. Lett. 2000, 84, 979, and references therein), we implicitly assume that transport is occurring via coherent tunneling and that coulomb blockade effects are negligible.
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 979
-
-
Di Ventra, M.1
Pantelides, S.T.2
Lang, N.D.3
-
24
-
-
16244383632
-
-
note
-
The relaxed structure of each portion of the backbone which is attached to a base is not a local property of the nucleotide, but is instead a property of the nearby sequence and the environment. We therefore first completely relaxed the 2′-deoxyadenosine 5′-monophosphate, from which we took the relaxed phosphate-sugar structure. We then employed this structure for all other nucleotides. We finally relaxed the latter nucleotides, keeping the phosphate-sugar atoms fixed. This also allows each nucleotide to be positioned between the electrodes in a similar way, which ensures that differences in electrical current are due to the bases only.
-
-
-
-
26
-
-
16244385099
-
-
note
-
The choice of the ranges for variations (1) and (6) is dictated by the size of the electrodes, i.e., in an actual experiment and for a polynucleotide, the x-axis rotation and z-axis translation are bound by the distance between probes. The ranges for variations (3), (4), and (5) are limited by the geometry of the [111] surface. The rotation around the y-axis is, on the other hand, arbitrary unless the spatial direction along the x-axis is also limited, as in, e.g., a nanopore.
-
-
-
-
29
-
-
0013327233
-
-
Otto, P.; Clementi, E.; Ladik, J. J. Chem. Phys. 1983, 78, 4547.
-
(1983)
J. Chem. Phys.
, vol.78
, pp. 4547
-
-
Otto, P.1
Clementi, E.2
Ladik, J.3
-
31
-
-
16244384326
-
-
note
-
The coordinates of these sequences have been relaxed by total-energy Hartree-Fock calculations in a similar way to the isolated nucleotides (see ref 23).
-
-
-
|