메뉴 건너뛰기




Volumn 247, Issue , 2013, Pages 1-20

Tackling the problem of classification with noisy data using Multiple Classifier Systems: Analysis of the performance and robustness

Author keywords

Attribute noise; Class noise; Classification; Multiple Classifier System; Noisy data

Indexed keywords

ATTRIBUTE NOISE; CLASS NOISE; CLASSIFICATION ALGORITHM; CLASSIFIER LEARNING; COMBINATION METHOD; INDIVIDUAL CLASSIFIERS; MULTIPLE CLASSIFIER SYSTEMS; NOISY DATA;

EID: 84880920627     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2013.06.002     Document Type: Article
Times cited : (87)

References (54)
  • 3
    • 80051550183 scopus 로고    scopus 로고
    • Class noise detection based on software metrics and ROC curves
    • C. Catal, O. Alan, and K. Balkan Class noise detection based on software metrics and ROC curves Information Sciences 181 2011 4867 4877
    • (2011) Information Sciences , vol.181 , pp. 4867-4877
    • Catal, C.1    Alan, O.2    Balkan, K.3
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Machine Learning 40 2000 139 157
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 10
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Information Sciences 180 2010 2044 2064
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 11
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. García, and F. Herrera An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons Journal of Machine Learning Research 9 2008 2677 2694
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 13
    • 0013331361 scopus 로고    scopus 로고
    • Real-world data is dirty: Data cleansing and the merge/purge problem
    • M.A. Hernández, and S.J. Stolfo Real-world data is dirty: data cleansing and the merge/purge problem Data Mining and Knowledge Discovery 2 1998 9 37
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 9-37
    • Hernández, M.A.1    Stolfo, S.J.2
  • 14
    • 0011187879 scopus 로고    scopus 로고
    • Multiple classifier combination: Lessons and next steps
    • A. Kandel, E. Bunke, World Scientific
    • T.K. Ho Multiple classifier combination: lessons and next steps A. Kandel, E. Bunke, Hybrid Methods in Pattern Recognition 2002 World Scientific 171 198
    • (2002) Hybrid Methods in Pattern Recognition , pp. 171-198
    • Ho, T.K.1
  • 16
    • 0001589146 scopus 로고
    • Ranks methods for combination of independent experiments in analysis of variance
    • J.L. Hodges, and E.L. Lehmann Ranks methods for combination of independent experiments in analysis of variance Annals of Mathematical Statistics 33 1962 482 497
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 482-497
    • Hodges, J.L.1    Lehmann, E.L.2
  • 17
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • S. Holm A simple sequentially rejective multiple test procedure Scandinavian Journal of Statistics 6 1979 65 70
    • (1979) Scandinavian Journal of Statistics , vol.6 , pp. 65-70
    • Holm, S.1
  • 18
    • 0029230267 scopus 로고
    • A method of combining multiple experts for the recognition of unconstrained handwritten numerals
    • Y.S. Huang, and C.Y. Suen A method of combining multiple experts for the recognition of unconstrained handwritten numerals IEEE Transactions on Pattern Analysis and Machine Intelligence 17 1995 90 93
    • (1995) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.17 , pp. 90-93
    • Huang, Y.S.1    Suen, C.Y.2
  • 24
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • L.I. Kuncheva Diversity in multiple classifier systems Information Fusion 6 2005 3 4
    • (2005) Information Fusion , vol.6 , pp. 3-4
    • Kuncheva, L.I.1
  • 26
    • 85012722936 scopus 로고
    • Combining the classification results of independent classifiers based on the Dempster/Shafer theory of evidence
    • E.S. Gelsema, L.N. Kanal, North-Holland Amsterdam
    • E. Mandler, and J. Schuermann Combining the classification results of independent classifiers based on the Dempster/Shafer theory of evidence E.S. Gelsema, L.N. Kanal, Pattern Recognition and Artificial Intelligence 1988 North-Holland Amsterdam 381 393
    • (1988) Pattern Recognition and Artificial Intelligence , pp. 381-393
    • Mandler, E.1    Schuermann, J.2
  • 27
    • 77957306548 scopus 로고    scopus 로고
    • A robust multiple classifier system for pixel classification of remote sensing images
    • U. Maulik, and D. Chakraborty A robust multiple classifier system for pixel classification of remote sensing images Fundamenta Informaticae 101 2010 286 304
    • (2010) Fundamenta Informaticae , vol.101 , pp. 286-304
    • Maulik, U.1    Chakraborty, D.2
  • 28
    • 0023188567 scopus 로고
    • Solving of optimization and identification problems by the committee methods
    • V.D. Mazurov, A.I. Krivonogov, and V.S. Kazantsev Solving of optimization and identification problems by the committee methods Pattern Recognition 20 1987 371 378
    • (1987) Pattern Recognition , vol.20 , pp. 371-378
    • Mazurov, V.D.1    Krivonogov, A.I.2    Kazantsev, V.S.3
  • 30
    • 34548736616 scopus 로고    scopus 로고
    • Fingerprint recognition using multiple classifier system
    • R.K. Nath Fingerprint recognition using multiple classifier system Fractals 15 2007 273 278
    • (2007) Fractals , vol.15 , pp. 273-278
    • Nath, R.K.1
  • 31
    • 84898030282 scopus 로고    scopus 로고
    • A study of the effect of different types of noise on the precision of supervised learning techniques
    • D. Nettleton, A. Orriols-Puig, and A. Fornells A study of the effect of different types of noise on the precision of supervised learning techniques Artificial Intelligence Review 33 2010 275 306
    • (2010) Artificial Intelligence Review , vol.33 , pp. 275-306
    • Nettleton, D.1    Orriols-Puig, A.2    Fornells, A.3
  • 32
  • 33
    • 77949615819 scopus 로고    scopus 로고
    • Foreign exchange market prediction with multiple classifiers
    • B. Qian, and K. Rasheed Foreign exchange market prediction with multiple classifiers Journal of Forecasting 29 2010 271 284
    • (2010) Journal of Forecasting , vol.29 , pp. 271-284
    • Qian, B.1    Rasheed, K.2
  • 34
    • 33744584654 scopus 로고    scopus 로고
    • Induction of decision trees
    • J.R. Quinlan, Induction of decision trees, in: Machine Learning, pp. 81-106.
    • Machine Learning , pp. 81-106
    • Quinlan, J.R.1
  • 37
    • 84883450766 scopus 로고    scopus 로고
    • An empirical study of the classification performance of learners on imbalanced and noisy software quality data
    • 10.1016/j.ins.2010.12.016
    • C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, and A. Folleco An empirical study of the classification performance of learners on imbalanced and noisy software quality data Information Sciences 2011 10.1016/j.ins.2010.12.016
    • (2011) Information Sciences
    • Seiffert, C.1    Khoshgoftaar, T.M.2    Van Hulse, J.3    Folleco, A.4
  • 38
    • 0001644870 scopus 로고
    • Optimizing group judgmental accuracy in the presence of interdependencies
    • L. Shapley, and B. Grofman Optimizing group judgmental accuracy in the presence of interdependencies Public Choice 43 1984 329 343
    • (1984) Public Choice , vol.43 , pp. 329-343
    • Shapley, L.1    Grofman, B.2
  • 40
    • 2142819999 scopus 로고    scopus 로고
    • Polishing blemishes: Issues in data correction
    • C.M. Teng Polishing blemishes: issues in data correction IEEE Intelligent Systems 19 2004 34 39
    • (2004) IEEE Intelligent Systems , vol.19 , pp. 34-39
    • Teng, C.M.1
  • 43
    • 0026762714 scopus 로고
    • A coupling procedure for the discrimination of mixed data
    • K.D. Wemecke A coupling procedure for the discrimination of mixed data Biometrics 48 1992 497 506
    • (1992) Biometrics , vol.48 , pp. 497-506
    • Wemecke, K.D.1
  • 45
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • M. Woźniak, M. Graña, and E. Corchado A survey of multiple classifier systems as hybrid systems Information Fusion 2013 http://dx.doi.org/10.1016/j.inffus.2013.04.006
    • (2013) Information Fusion
    • Woźniak, M.1    Graña, M.2    Corchado, E.3
  • 49
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C.Y. Suen Methods of combining multiple classifiers and their applications to handwriting recognition IEEE Transactions on Systems, Man, and Cybernetics 22 1992 418 435
    • (1992) IEEE Transactions on Systems, Man, and Cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 50
    • 77958151233 scopus 로고    scopus 로고
    • Integrating induction and deduction for noisy data mining
    • Y. Zhang, and X. Wu Integrating induction and deduction for noisy data mining Information Sciences 180 2010 2663 2673
    • (2010) Information Sciences , vol.180 , pp. 2663-2673
    • Zhang, Y.1    Wu, X.2
  • 51
    • 2142824230 scopus 로고    scopus 로고
    • Analyzing software measurement data with clustering techniques
    • S. Zhong, T.M. Khoshgoftaar, and N. Seliya Analyzing software measurement data with clustering techniques IEEE Intelligent Systems 19 2004 20 27
    • (2004) IEEE Intelligent Systems , vol.19 , pp. 20-27
    • Zhong, S.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 52
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study
    • X. Zhu, and X. Wu Class noise vs. attribute noise: a quantitative study Artificial Intelligence Review 22 2004 177 210
    • (2004) Artificial Intelligence Review , vol.22 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.