메뉴 건너뛰기




Volumn 181, Issue 21, 2011, Pages 4867-4877

Class noise detection based on software metrics and ROC curves

Author keywords

Metric threshold values; Noise detection; Receiver Operating Characteristic (ROC) curve; Software fault prediction; Software metrics; Software quality

Indexed keywords

METRIC THRESHOLD VALUES; NOISE DETECTION; RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE; SOFTWARE FAULT PREDICTION; SOFTWARE METRICS; SOFTWARE QUALITY;

EID: 80051550183     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.06.017     Document Type: Article
Times cited : (52)

References (33)
  • 2
    • 59149098920 scopus 로고    scopus 로고
    • Associated evolution of a support vector machine-based classifier for pedestrian detection
    • X.B. Cao, Y.W. Xu, D. Chen, and H. Qiao Associated evolution of a support vector machine-based classifier for pedestrian detection Information Sciences 179 8 2009 1070 1077 http://dx.doi.org/10.1016/j.ins.2008.10.020
    • (2009) Information Sciences , vol.179 , Issue.8 , pp. 1070-1077
    • Cao, X.B.1    Xu, Y.W.2    Chen, D.3    Qiao, H.4
  • 8
    • 7044254621 scopus 로고    scopus 로고
    • Detecting Outliers Using Rule-Based Modeling for Improving CBR-Based Software Quality Classification Models
    • Case-Based Reasoning Research and Development
    • T.M. Khoshgoftaar, L.A. Bullard, and K. Gao Detecting outliers using rule-based modeling for improving cbr-based software quality classification models K.D. Ashley, D.G. Bridge, Proceedings of the 16th International Conference on Case-Based Reasoning vol. 1689 2003 Springer-Verlag LNAI, Trondheim, Norway 216 230 (Pubitemid 36905834)
    • (2003) Lecture Notes in Computer Science , Issue.2689 , pp. 216-230
    • Khoshgoftaar, T.M.1    Bullard, L.A.2    Gao, K.3
  • 9
    • 14844337488 scopus 로고    scopus 로고
    • The necessity of assuring quality in software measurement data
    • Proceedings - 10th International Symposium on Software Metrics, METRICS 2004
    • T.M. Khoshgoftaar, and N. Seliya The necessity of assuring quality in software measurement data Proceedings of the Software Metrics, 10th International Symposium 2004 IEEE Computer Society Washington, DC 119 130 http://dx.doi.org/10.1109/METRICS.2004.41 (Pubitemid 40338154)
    • (2004) Proceedings - International Software Metrics Symposium , pp. 119-130
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 12
    • 84883723652 scopus 로고    scopus 로고
    • Enhancing software quality estimation using ensemble-classifier based noise filtering
    • T.M. Khoshgoftaar, S. Zhong, and V. Joshi Enhancing software quality estimation using ensemble-classifier based noise filtering Intelligent Data Analysis 9 1 2005 3 27
    • (2005) Intelligent Data Analysis , vol.9 , Issue.1 , pp. 3-27
    • Khoshgoftaar, T.M.1    Zhong, S.2    Joshi, V.3
  • 13
    • 38949173518 scopus 로고    scopus 로고
    • A hybrid approach to cleansing software measurement data
    • DOI 10.1109/ICTAI.2006.11, 4031964, Procedings - 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006
    • T.M. Khoshgoftaar, J.V. Hulse, and C. Seiffert A hybrid approach to cleansing software measurement data Proceedings of the 18th IEEE International Conference on Tools with Artificial intelligence, ICTAI 2006 IEEE Computer Society Washington, DC 713 722 http://dx.doi.org/10.1109/ICTAI.2006.11 (Pubitemid 351209586)
    • (2006) Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI , pp. 713-722
    • Khoshgoftaar, T.M.1    Van Hulse, J.2    Seiffert, C.3
  • 14
    • 33746864881 scopus 로고    scopus 로고
    • An empirical study of predicting software faults with case-based reasoning
    • DOI 10.1007/s11219-006-7597-z
    • T.M. Khoshgoftaar, N. Seliya, and N. Sundaresh An empirical study of predicting software faults with case-based reasoning Software Quality Journal 14 2 2006 85 111 (Pubitemid 44195275)
    • (2006) Software Quality Journal , vol.14 , Issue.2 , pp. 85-111
    • Khoshgoftaar, T.M.1    Seliya, N.2    Sundaresh, N.3
  • 15
    • 43249109017 scopus 로고    scopus 로고
    • Fuzzy relevance vector machine for learning from unbalanced data and noise
    • D. Li, W. Hu, W. Xiong, and J. Yang Fuzzy relevance vector machine for learning from unbalanced data and noise Pattern Recognition Letters 29 9 2008 1175 1181 http://dx.doi.org/10.1016/j.patrec.2008.01.009
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1175-1181
    • Li, D.1    Hu, W.2    Xiong, W.3    Yang, J.4
  • 17
    • 36549024482 scopus 로고    scopus 로고
    • A weighted rough set based method developed for class imbalance learning
    • DOI 10.1016/j.ins.2007.10.002, PII S002002550700477X
    • J. Liu, Q. Hu, and D. Yu A weighted rough set based method developed for class imbalance learning Information Sciences 178 4 2008 1235 1256 http://dx.doi.org/10.1016/j.ins.2007.10.002 (Pubitemid 350180903)
    • (2008) Information Sciences , vol.178 , Issue.4 , pp. 1235-1256
    • Liu, J.1    Hu, Q.2    Yu, D.3
  • 18
    • 70349750474 scopus 로고    scopus 로고
    • Troika - An improved stacking schema for classification tasks
    • E. Menahem, L. Rokach, and Y. Elovici Troika - An improved stacking schema for classification tasks Information Sciences 179 24 2009 4097 4122
    • (2009) Information Sciences , vol.179 , Issue.24 , pp. 4097-4122
    • Menahem, E.1    Rokach, L.2    Elovici, Y.3
  • 19
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • DOI 10.1109/TSE.2007.256941
    • T. Menzies, J. Greenwald, and A. Frank Data mining static code attributes to learn defect predictors IEEE Transactions on Software Engineering 33 1 2007 2 13 (Pubitemid 46002165)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 21
    • 34648835118 scopus 로고    scopus 로고
    • Empirical analysis of software fault content and fault proneness using Bayesian methods
    • DOI 10.1109/TSE.2007.70722
    • G.J. Pai, and J.B. Dugan Empirical analysis of software fault content and fault proneness using bayesian methods IEEE Transactions on Software Engineering 33 10 2007 675 686 (Pubitemid 47455979)
    • (2007) IEEE Transactions on Software Engineering , vol.33 , Issue.10 , pp. 675-686
    • Pai, G.J.1    Dugan, J.B.2
  • 22
    • 56949083610 scopus 로고    scopus 로고
    • Estimating software readiness using predictive models
    • T. Quah Estimating software readiness using predictive models Information Sciences 179 4 2009 430 445 http://dx.doi.org/10.1016/j.ins.2008.10.005
    • (2009) Information Sciences , vol.179 , Issue.4 , pp. 430-445
    • Quah, T.1
  • 27
    • 0026081725 scopus 로고
    • A statistical method for assessing a threshold in epidemiological studies
    • K. Ulm A statistical method for assessing a threshold in epidemiological studies Statistics in Medicine 10 3 1991 341 349
    • (1991) Statistics in Medicine , vol.10 , Issue.3 , pp. 341-349
    • Ulm, K.1
  • 28
    • 40749151020 scopus 로고    scopus 로고
    • A comprehensive empirical evaluation of missing value imputation in noisy software measurement data
    • DOI 10.1016/j.jss.2007.07.043, PII S0164121207002397
    • J. Van Hulse, and T.M. Khoshgoftaar A comprehensive empirical evaluation of missing value imputation in noisy software measurement data Journal of Systems and Software 81 5 2008 691 708 http://dx.doi.org/10.1016/j.jss.2007.07. 043 (Pubitemid 351389565)
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 691-708
    • Van Hulse, J.1    Khoshgoftaar, T.M.2
  • 31
    • 67650995440 scopus 로고    scopus 로고
    • Feature selection for multi-label Naive Bayes classification
    • M. Zhang, J.M. Peña, and V. Robles Feature selection for multi-label Naive Bayes classification Information Sciences 179 19 2009 3218 3229
    • (2009) Information Sciences , vol.179 , Issue.19 , pp. 3218-3229
    • Zhang, M.1    Peña, J.M.2    Robles, V.3
  • 32
    • 2142824230 scopus 로고    scopus 로고
    • Analyzing software measurement data with clustering techniques
    • S. Zhong, T.M. Khoshgoftaar, and N. Seliya Analyzing software measurement data with clustering techniques IEEE Intelligent Systems 19 2 2004 20 27 http://dx.doi.org/10.1109/MIS.2004.1274907
    • (2004) IEEE Intelligent Systems , vol.19 , Issue.2 , pp. 20-27
    • Zhong, S.1    Khoshgoftaar, T.M.2    Seliya, N.3
  • 33
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study of their impacts
    • X. Zhu, and X. Wu Class noise vs. attribute noise: a quantitative study of their impacts Artificial Intelligence Review 22 3-4 2004 177 210
    • (2004) Artificial Intelligence Review , vol.22 , Issue.34 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.