메뉴 건너뛰기




Volumn 29, Issue 3, 2010, Pages 271-284

Foreign exchange market prediction with multiple classifiers

Author keywords

Efficient market hypothesis; Foreign exchange market prediction; Hurst exponent; Machine learning; Model ensemble

Indexed keywords

COMMERCE; DECISION TREES; ELECTRONIC TRADING; FORECASTING; LEARNING SYSTEMS; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; RANDOM PROCESSES;

EID: 77949615819     PISSN: 02776693     EISSN: 1099131X     Source Type: Journal    
DOI: 10.1002/for.1124     Document Type: Article
Times cited : (22)

References (50)
  • 2
    • 0002235761 scopus 로고
    • Price movements in speculative markets: Trends or random walks
    • May
    • Alexander SS. 1961. Price movements in speculative markets: trends or random walks. Industrial Management Review May: 7-26.
    • (1961) Industrial Management Review , pp. 7-26
    • Alexander, S.S.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. 1996. Bagging predictors. Machine Learning 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0001395887 scopus 로고
    • Efficiency and inefficiency in thinly traded stock markets: Kuwait and Saudi Arabia
    • Butler KC, Malaikah JS. 1992. Efficiency and inefficiency in thinly traded stock markets: Kuwait and Saudi Arabia. Journal of Banking and Finance 16(1): 197-210.
    • (1992) Journal of Banking and Finance , vol.16 , Issue.1 , pp. 197-210
    • Butler, K.C.1    Malaikah, J.S.2
  • 7
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Cao L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110: 43-50.
    • (1997) Physica D , vol.110 , pp. 43-50
    • Cao, L.1
  • 11
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: Four current direction
    • Dietterich TG, Winter 1997. Machine-learning research: four current direction. AI Magazine 18(4): 97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1    Winter2
  • 13
    • 0000029776 scopus 로고
    • Efficient capital markets: II
    • Fama EF. 1991. Efficient capital markets: II. Journal of Finance 46(5): 1575-1617.
    • (1991) Journal of Finance , vol.46 , Issue.5 , pp. 1575-1617
    • Fama, E.F.1
  • 14
    • 0002528209 scopus 로고
    • The behaviour of stock market prices
    • Fama EF. 1965. The behaviour of stock market prices. Journal of Business 38: 34-105.
    • (1965) Journal of Business , vol.38 , pp. 34-105
    • Fama, E.F.1
  • 16
    • 0036805168 scopus 로고    scopus 로고
    • Permanent and temporary components of stock prices: Evidence from assessing macroeconomic stocks
    • Gallagher LA, Taylor MP. 2002. Permanent and temporary components of stock prices: evidence from ssessing macroeconomic stocks. Southern Economic Journal 69: 245-262.
    • (2002) Southern Economic Journal , vol.69 , pp. 245-262
    • Gallagher, L.A.1    Taylor, M.P.2
  • 18
    • 0035399722 scopus 로고    scopus 로고
    • Noisy time series prediction using a recurrent neural network and grammatical inference
    • July
    • Giles CL, Lawrence S, Tsoi AC. July 2001. Noisy time series prediction using a recurrent neural network and grammatical inference. Machine learning 44(1-2): 161-183.
    • (2001) Machine Learning , vol.44 , Issue.1-2 , pp. 161-183
    • Giles, C.L.1    Lawrence, S.2    Tsoi, A.C.3
  • 19
    • 1442358083 scopus 로고    scopus 로고
    • Can one make any crash prediction in finance using the local Hurst exponent idea?
    • Grech D, Mazur Z. 2004. Can one make any crash prediction in finance using the local Hurst exponent idea? Physica A: Statistical Mechanics and its Applications 336: 133-145.
    • (2004) Physica A: Statistical Mechanics and Its Applications , vol.336 , pp. 133-145
    • Grech, D.1    Mazur, Z.2
  • 20
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan MT, Menhaj M. 1994. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5(6): 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 23
    • 0004192862 scopus 로고    scopus 로고
    • Predicting the Stock Market
    • Center of Mathematical Modeling, Mälardalen University, Västerås, Sweden
    • Hellstrom T, Holmstrom K. 1998. Predicting the Stock Market. Technical Report Series IMa-TOM-1997-2007 Center of Mathematical Modeling, Mälardalen University, Västerås, Sweden.
    • (1998) Technical Report Series IMa-TOM- 1997-2007
    • Hellstrom, T.1    Holmstrom, K.2
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe MB, White H. 1989. Multilayer feedforward networks are universal approximators. Neural networks 2(5): 259-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 259-366
    • Hornik, K.1    Stinchcombe, M.B.2    White, H.3
  • 25
    • 84977719043 scopus 로고
    • Chaos and nonlinear dynamics: Application to financial markets
    • Hsieh DA. 1991. Chaos and nonlinear dynamics: application to financial markets. Journal of Finance 46: 1839-1877.
    • (1991) Journal of Finance , vol.46 , pp. 1839-1877
    • Hsieh, D.A.1
  • 27
    • 0001281632 scopus 로고
    • Some anomalous evidence regarding market efficiency
    • Jensen MC. 1978 Some anomalous evidence regarding market efficiency. Journal of Financial Economics 6: 95-102.
    • (1978) Journal of Financial Economics , vol.6 , pp. 95-102
    • Jensen, M.C.1
  • 28
    • 33846549741 scopus 로고    scopus 로고
    • A multivariate test for stock market efficiency: The case of ASE
    • October
    • Kavussanos MG, Dockery E. October 2001. A multivariate test for stock market efficiency: the case of ASE. Applied Financial Economics 11(5): 573-579.
    • (2001) Applied Financial Economics , vol.11 , Issue.5 , pp. 573-579
    • Kavussanos, M.G.1    Dockery, E.2
  • 31
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • Mandelbrot BB, Ness WVJ. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422-437.
    • (1968) SIAM Review , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Ness, W.V.J.2
  • 34
    • 0037788906 scopus 로고    scopus 로고
    • Decision tree learning
    • Mitchell T (ed.). McGraw-Hill: New York
    • Mitchell T. 1997. Decision tree learning. In Machine Learning, Mitchell T (ed.). McGraw-Hill: New York; 52-78.
    • (1997) Machine Learning , pp. 52-78
    • Mitchell, T.1
  • 35
  • 43
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction
    • Stone M. 1974. Cross-validatory choice and assessment of statistical prediction. Journal of the Royal Statistical Society B 36: 111-120.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-120
    • Stone, M.1
  • 46
    • 0000191709 scopus 로고
    • Testing the efficient markets hypothesis with gradient descent algorithms
    • Refenes AP (ed.). Wiley: Chichester
    • Tsibouris G, Zeidenberg M. 1995. Testing the efficient markets hypothesis with gradient descent algorithms. In Neural Networks in the Capital Markets, Refenes AP (ed.). Wiley: Chichester; 127-136.
    • (1995) Neural Networks in the Capital Markets , pp. 127-136
    • Tsibouris, G.1    Zeidenberg, M.2
  • 47
    • 0034894378 scopus 로고    scopus 로고
    • An empirical analysis of data requirements for financial forecasting with neural networks
    • Walczak S. 2001. An empirical analysis of data requirements for financial forecasting with neural networks. Journal of Management Information Systems 17(4): 203-222.
    • (2001) Journal of Management Information Systems , vol.17 , Issue.4 , pp. 203-222
    • Walczak, S.1
  • 48
    • 0000028873 scopus 로고    scopus 로고
    • A reality check for data snooping
    • White H. 2000. A reality check for data snooping. Econometrica 68(5): 1097-1126.
    • (2000) Econometrica , vol.68 , Issue.5 , pp. 1097-1126
    • White, H.1
  • 49
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. 1992. Stacked generalization. Neural Networks 5: 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.