메뉴 건너뛰기




Volumn 180, Issue 14, 2010, Pages 2663-2673

Integrating induction and deduction for noisy data mining

Author keywords

Deduction; Error correction; Induction; Noise handling

Indexed keywords

DATA MINING TECHNIQUES; DATA VOLUME; DEDUCTION; DEDUCTIVE REASONING; INDUCTION; INDUCTIVE LEARNING; INPUT DATAS; INTEGRATION FRAMEWORKS; NEW OPPORTUNITIES; NOISE CORRUPTION; NOISE HANDLING; NUMBER OF DATUM; STRUCTURED KNOWLEDGE;

EID: 77958151233     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.11.045     Document Type: Article
Times cited : (15)

References (43)
  • 4
    • 47249144374 scopus 로고    scopus 로고
    • Clustering multidimensional sequences in spatial and temporal databases
    • I. Assent, R. Krieger, B. Glavic, and T. Seidl Clustering multidimensional sequences in spatial and temporal databases Knowledge and Information Systems 16 1 2008 29 51
    • (2008) Knowledge and Information Systems , vol.16 , Issue.1 , pp. 29-51
    • Assent, I.1    Krieger, R.2    Glavic, B.3    Seidl, T.4
  • 7
    • 33846208751 scopus 로고    scopus 로고
    • Enriching the ER model based on discovered association rules
    • DOI 10.1016/j.ins.2006.07.001, PII S0020025506001915, Fuzzy set applications in Industrial Engineering
    • G. Chen, M. Ren, P. Yan, and X. Guo Enriching the ER model based on discovered association rules Information Sciences 177 7 2007 1558 1566 (Pubitemid 46107423)
    • (2007) Information Sciences , vol.177 , Issue.7 , pp. 1558-1566
    • Chen, G.1    Ren, M.2    Yan, P.3    Guo, X.4
  • 8
    • 47249155714 scopus 로고    scopus 로고
    • A survey on algorithms for mining frequent itemsets over data streams
    • J. Cheng, Y. Ke, and W. Ng A survey on algorithms for mining frequent itemsets over data streams Knowledge and Information Systems 16 1 2008 1 27
    • (2008) Knowledge and Information Systems , vol.16 , Issue.1 , pp. 1-27
    • Cheng, J.1    Ke, Y.2    Ng, W.3
  • 9
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • C. Creighton, and S. Hanash Mining gene expression databases for association rules Bioinformatics 19 1 2003 79 86
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 10
    • 0029678997 scopus 로고    scopus 로고
    • Iterative optimization and simplification of hierarchical clusterings
    • D. Fisher Iterative optimization and simplification of hierarchical clusterings Journal of Artifical Intelligence Research 4 1996 147 179
    • (1996) Journal of Artifical Intelligence Research , vol.4 , pp. 147-179
    • Fisher, D.1
  • 11
    • 0009663357 scopus 로고
    • A multiple comparison procedure for comparing several treatments with a control
    • C.W. Dunnet A multiple comparison procedure for comparing several treatments with a control Journal of the American Statistical Association 50 1955 1096 1121
    • (1955) Journal of the American Statistical Association , vol.50 , pp. 1096-1121
    • Dunnet, C.W.1
  • 13
    • 0034832530 scopus 로고    scopus 로고
    • Confirmation-guided discovery of first-order rules with tertius
    • Peter A. Flach, and Nicolas Lachiche Confirmation-guided discovery of first-order rules with tertius Machine Learning 42 2001 61 95
    • (2001) Machine Learning , vol.42 , pp. 61-95
    • Flach, P.A.1    Lachiche, N.2
  • 14
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Yoav Freund, and Robert E. Schapire A decision-theoretic generalization of on-line learning and an application to boosting Journal of Computer and System Sciences 55 1997 119 139
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0034850351 scopus 로고    scopus 로고
    • Combining inductive and deductive tools for data analysis
    • S. Greco, E. Masciari, and L. Pontieri Combining inductive and deductive tools for data analysis AI Communications 14 2 2001 69 82
    • (2001) AI Communications , vol.14 , Issue.2 , pp. 69-82
    • Greco, S.1    Masciari, E.2    Pontieri, L.3
  • 17
    • 52949087146 scopus 로고    scopus 로고
    • Improving artificial neural networks performance in seasonal time series forecasting
    • C. Hamzaebi Improving artificial neural networks performance in seasonal time series forecasting Information Sciences 178 23 2008 4550 4559
    • (2008) Information Sciences , vol.178 , Issue.23 , pp. 4550-4559
    • Hamzaebi, C.1
  • 20
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • J.A. Hartigan, and M.A. Wong A k-means clustering algorithm Applied Statistics 28 1 1979 100 108
    • (1979) Applied Statistics , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 22
    • 0003704318 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science, Irvine, CA
    • S. Hettich, S.D. Bay, The UCI KDD archive, University of California, Department of Information and Computer Science, Irvine, CA, 1999. .
    • (1999) The UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 23
    • 19744376227 scopus 로고    scopus 로고
    • Adapting the CBA algorithm by means of intensity of implication
    • D. Janssens, G. Wets, T. Brijs, and K. Vanhoof Adapting the CBA algorithm by means of intensity of implication Information Sciences 173 4 2005 305 318
    • (2005) Information Sciences , vol.173 , Issue.4 , pp. 305-318
    • Janssens, D.1    Wets, G.2    Brijs, T.3    Vanhoof, K.4
  • 25
    • 51349129991 scopus 로고    scopus 로고
    • Image retrieval model based on weighted visual features determined by relevance feedback
    • W.C. Kim, J.Y. Song, S.W. Kim, and S. Park Image retrieval model based on weighted visual features determined by relevance feedback Information Sciences 178 22 2008 4301 4313
    • (2008) Information Sciences , vol.178 , Issue.22 , pp. 4301-4313
    • Kim, W.C.1    Song, J.Y.2    Kim, S.W.3    Park, S.4
  • 26
    • 51349163865 scopus 로고    scopus 로고
    • Fast discovery of sequential patterns in large databases using effective time-indexing
    • M.Y. Lin, S.C. Hsueh, and C.W. Chang Fast discovery of sequential patterns in large databases using effective time-indexing Information Sciences 178 22 2008 4228 4245
    • (2008) Information Sciences , vol.178 , Issue.22 , pp. 4228-4245
    • Lin, M.Y.1    Hsueh, S.C.2    Chang, C.W.3
  • 30
    • 38649116960 scopus 로고    scopus 로고
    • Fast and effective clustering of XML data using structural information
    • R. Nayak Fast and effective clustering of XML data using structural information Knowledge and Information Systems 14 2 2008 197 215
    • (2008) Knowledge and Information Systems , vol.14 , Issue.2 , pp. 197-215
    • Nayak, R.1
  • 31
    • 0031988271 scopus 로고    scopus 로고
    • Data quality and systems theory
    • K. Orr Data quality and systems theory Communications of the ACM 42 2 1998 66 71
    • (1998) Communications of the ACM , vol.42 , Issue.2 , pp. 66-71
    • Orr, K.1
  • 33
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modeling
    • F. Recknagel Applications of machine learning to ecological modeling Ecological Modelling 146 2001 1 3
    • (2001) Ecological Modelling , Issue.146 , pp. 1-3
    • Recknagel, F.1
  • 38
    • 48949102506 scopus 로고    scopus 로고
    • Search structures and algorithms for personalized ranking
    • G.W. You, and S.W. Hwangk Search structures and algorithms for personalized ranking Information Sciences 178 20 2008 3925 3942
    • (2008) Information Sciences , vol.178 , Issue.20 , pp. 3925-3942
    • You, G.W.1    Hwangk, S.W.2
  • 39
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny Birch: an efficient data clustering method for very large databases ACM SIGMOD Record 25 2 1996 103 114
    • (1996) ACM SIGMOD Record , vol.25 , Issue.2 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 40
    • 85052643861 scopus 로고    scopus 로고
    • Knowledge Discovery and Data Mining: Challenges and Realities
    • X. Zhu Knowledge Discovery and Data Mining: Challenges and Realities IGI Global 2007
    • (2007) IGI Global
    • Zhu, X.1
  • 42
    • 33646598358 scopus 로고    scopus 로고
    • Bridging local and global data cleansing: Identifying class noise in large, distributed datasets
    • X. Zhu, X. Wu, and Q. Chen Bridging local and global data cleansing: identifying class noise in large, distributed datasets Data Mining and Knowledge Discovery 12 2 2006 275 308
    • (2006) Data Mining and Knowledge Discovery , vol.12 , Issue.2 , pp. 275-308
    • Zhu, X.1    Wu, X.2    Chen, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.