메뉴 건너뛰기




Volumn 45, Issue , 2013, Pages 83-93

Event management for large scale event-driven digital hardware spiking neural networks

Author keywords

Event driven simulation; Field programmable gate array; Neuromorphic engineering; Pipelined heap queue; Spiking neural network

Indexed keywords

DIGITAL HARDWARE; EFFICIENT IMPLEMENTATION; EVENT-DRIVEN SIMULATIONS; HARDWARE SOLUTIONS; NEUROMORPHIC ENGINEERING; NEUROMORPHIC SYSTEMS; PIPELINED HEAP QUEUE; SPIKING NEURAL NETWORKS;

EID: 84880837151     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2013.02.005     Document Type: Article
Times cited : (4)

References (36)
  • 2
    • 73449091492 scopus 로고    scopus 로고
    • Real-time clustering of datasets with hardware embedded neuromorphic neural networks.
    • In International workshop on high performance computational systems biology, 2009, HIBI'09.
    • Bako, L. (2009). Real-time clustering of datasets with hardware embedded neuromorphic neural networks. In International workshop on high performance computational systems biology, 2009, HIBI'09 (pp. 13-22).
    • (2009) , pp. 13-22
    • Bako, L.1
  • 3
    • 77955998108 scopus 로고    scopus 로고
    • Neural dynamics in reconfigurable silicon.
    • In Proceedings of 2010 IEEE international symposium on circuits and systems, ISCAS.
    • Basu, A., Ramakrishnan, S., & Hasler, P. (2010). Neural dynamics in reconfigurable silicon. In Proceedings of 2010 IEEE international symposium on circuits and systems, ISCAS (pp. 1943-1946).
    • (2010) , pp. 1943-1946
    • Basu, A.1    Ramakrishnan, S.2    Hasler, P.3
  • 5
    • 79960885023 scopus 로고    scopus 로고
    • FPGA implementation of a spiking neural network for pattern matching.
    • In 2011 IEEE international symposium on circuits and systems.
    • Caron, L.-C., Mailhot, F., & Rouat, J. (2011). FPGA implementation of a spiking neural network for pattern matching. In 2011 IEEE international symposium on circuits and systems (pp. 649-652).
    • (2011) , pp. 649-652
    • Caron, L.-C.1    Mailhot, F.2    Rouat, J.3
  • 6
    • 79957846057 scopus 로고    scopus 로고
    • Design of a one million neuron single fpga neuromorphic system for real-time multimodal scene analysis.
    • In 2011 45th Annual conference on information sciences and systems, CISS.
    • Cassidy, A., Andreou, A., & Georgiou, J. (2011). Design of a one million neuron single fpga neuromorphic system for real-time multimodal scene analysis. In 2011 45th Annual conference on information sciences and systems, CISS (pp. 1?6).
    • (2011) , pp. 1-6
    • Cassidy, A.1    Andreou, A.2    Georgiou, J.3
  • 8
    • 84867665276 scopus 로고    scopus 로고
    • A large-scale spiking neural network accelerator for FPGA systems
    • Springer, Berlin, Heidelberg, A. Villa, W. Duch, P. érdi, F. Masulli, G. Palm (Eds.) Artificial neural networks and machine learning ICANN 2012
    • Cheung K., Schultz S., Luk W. A large-scale spiking neural network accelerator for FPGA systems. Lecture Notes in Computer Science 2012, vol. 7552:113-120. Springer, Berlin, Heidelberg. A. Villa, W. Duch, P. érdi, F. Masulli, G. Palm (Eds.).
    • (2012) Lecture Notes in Computer Science , vol.7552 , pp. 113-120
    • Cheung, K.1    Schultz, S.2    Luk, W.3
  • 9
    • 0346365195 scopus 로고    scopus 로고
    • SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons
    • Delorme A., Thorpe S. SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons. Network: Computation in Neural Systems 2003, 14:613-627.
    • (2003) Network: Computation in Neural Systems , vol.14 , pp. 613-627
    • Delorme, A.1    Thorpe, S.2
  • 10
    • 65549102992 scopus 로고    scopus 로고
    • Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants
    • D'Haene M., Schrauwen B., Van Campenhout J., Stroobandt D. Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants. Neural Computation 2009, 21:1068-1099.
    • (2009) Neural Computation , vol.21 , pp. 1068-1099
    • D'Haene, M.1    Schrauwen, B.2    Van Campenhout, J.3    Stroobandt, D.4
  • 11
    • 84880831204 scopus 로고    scopus 로고
    • Efficiente simulatietechnieken voor gepulste neurale netwerken. Ph.D. Thesis.
    • D'Haene, M. (2010). Efficiente simulatietechnieken voor gepulste neurale netwerken. Ph.D. Thesis.
    • (2010)
    • D'Haene, M.1
  • 14
    • 0033202669 scopus 로고    scopus 로고
    • Fast digital simulation of spiking neural networks and neuromorphic integration with spikelab
    • Fast digital simulation; spiking neural networks; neuromorphic integration; SPIKELAB; distributed event driven simulation; time driven simulation; computational resources; digital neuromorphic circuits; analogue neuromorphic circuits
    • Grassmann C., Anlauf J. Fast digital simulation of spiking neural networks and neuromorphic integration with spikelab. International Journal of Neural Systems 1999, 9:473-478. Fast digital simulation; spiking neural networks; neuromorphic integration; SPIKELAB; distributed event driven simulation; time driven simulation; computational resources; digital neuromorphic circuits; analogue neuromorphic circuits.
    • (1999) International Journal of Neural Systems , vol.9 , pp. 473-478
    • Grassmann, C.1    Anlauf, J.2
  • 15
    • 34247188439 scopus 로고    scopus 로고
    • Pipelined heap (priority queue) management for advanced scheduling in high-speed networks
    • Ioannou A., Katevenis M.G.H. Pipelined heap (priority queue) management for advanced scheduling in high-speed networks. IEEE/ACM Transactions on Networking 2007, 15:450-461.
    • (2007) IEEE/ACM Transactions on Networking , vol.15 , pp. 450-461
    • Ioannou, A.1    Katevenis, M.G.H.2
  • 16
    • 0034767174 scopus 로고    scopus 로고
    • The double queue method: a numerical method for integrate-and-fire neuron networks
    • Double queue method; numerical method; integrate-and-fire neuron networks; initial-value problems; IVP; finite-differencing; differential equations; FDM; neural network; IFNN; discontinuities; DQM; event-queue based numerical method
    • Lee G., Farhat N. The double queue method: a numerical method for integrate-and-fire neuron networks. Neural Networks 2001, 14:921-932. Double queue method; numerical method; integrate-and-fire neuron networks; initial-value problems; IVP; finite-differencing; differential equations; FDM; neural network; IFNN; discontinuities; DQM; event-queue based numerical method.
    • (2001) Neural Networks , vol.14 , pp. 921-932
    • Lee, G.1    Farhat, N.2
  • 17
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: the third generation of neural network models
    • Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Networks 1997, 10:1659-1671.
    • (1997) Neural Networks , vol.10 , pp. 1659-1671
    • Maass, W.1
  • 18
    • 0034296490 scopus 로고    scopus 로고
    • Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses
    • Event-driven simulation; spiking neurons; dynamical synapses; recurrent neural networks; jumps; stochasticity; VLSI
    • Mattia M., Del Giudice P. Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation 2000, 12:2305-2329. Event-driven simulation; spiking neurons; dynamical synapses; recurrent neural networks; jumps; stochasticity; VLSI.
    • (2000) Neural Computation , vol.12 , pp. 2305-2329
    • Mattia, M.1    Del Giudice, P.2
  • 20
    • 0016130757 scopus 로고
    • A model for visual shape recognition
    • Milner P. A model for visual shape recognition. Psychological Review 1974, 81:521-535.
    • (1974) Psychological Review , vol.81 , pp. 521-535
    • Milner, P.1
  • 21
    • 84855665544 scopus 로고    scopus 로고
    • A vlsi network of spiking neurons with an asynchronous static random access memory.
    • San Diego, CA, United states. Circuit blocks; current mode; data signals; dynamic synapse; integrate-and-fire neurons; neuromorphic; on chips; spiking neuron; standard input; static random access memory; synaptic weight.
    • Moradi, S.,& Indiveri, G. (2011). A vlsi network of spiking neurons with an asynchronous static random access memory (pp. 277-280). San Diego, CA, United states. Circuit blocks; current mode; data signals; dynamic synapse; integrate-and-fire neurons; neuromorphic; on chips; spiking neuron; standard input; static random access memory; synaptic weight.
    • (2011) , pp. 277-280
    • Moradi, S.1    Indiveri, G.2
  • 22
    • 20844460509 scopus 로고    scopus 로고
    • Advancing the boundaries of high-connectivity network simulation with distributed computing
    • High-connectivity network simulation; distributed computing; simulation tools; computational neuroscience; brain functions; cortical networks; biological neural networks; neuron models
    • Morrison A., Mehring C., Geisel T., Aertsen A., Diesmann M. Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Computation 2005, 17:1776-1801. High-connectivity network simulation; distributed computing; simulation tools; computational neuroscience; brain functions; cortical networks; biological neural networks; neuron models.
    • (2005) Neural Computation , vol.17 , pp. 1776-1801
    • Morrison, A.1    Mehring, C.2    Geisel, T.3    Aertsen, A.4    Diesmann, M.5
  • 23
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete-time neural network simulations
    • Subthreshold integration; continuous spike times; discrete-time neural network simulations; integrate-and-fire-type neuron models; synaptic propagation delay; event-driven simulation; time-driven global scheduling
    • Morrison A., Straube S., Plesser H., Diesmann M. Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation 2007, 19:47-79. Subthreshold integration; continuous spike times; discrete-time neural network simulations; integrate-and-fire-type neuron models; synaptic propagation delay; event-driven simulation; time-driven global scheduling.
    • (2007) Neural Computation , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.3    Diesmann, M.4
  • 24
    • 78049354610 scopus 로고    scopus 로고
    • Simulation of large spiking neural networks on distributed architectures, the DAMNED simulator
    • Springer, Berlin, Heidelberg, D. Palmer-Brown, C. Draganova, E. Pimenidis, H. Mouratidis (Eds.) Engineering applications of neural networks
    • Mouraud A., Puzenat D. Simulation of large spiking neural networks on distributed architectures, the DAMNED simulator. Communications in computer and information science 2009, vol. 43:359-370. Springer, Berlin, Heidelberg. D. Palmer-Brown, C. Draganova, E. Pimenidis, H. Mouratidis (Eds.).
    • (2009) Communications in computer and information science , vol.43 , pp. 359-370
    • Mouraud, A.1    Puzenat, D.2
  • 26
    • 35648992055 scopus 로고    scopus 로고
    • Monophonic sound source separation with an unsupervised network of spiking neurones
    • Pichevar R., Rouat J. Monophonic sound source separation with an unsupervised network of spiking neurones. Neurocomputing 2007, 71:109-120.
    • (2007) Neurocomputing , vol.71 , pp. 109-120
    • Pichevar, R.1    Rouat, J.2
  • 27
    • 33748424982 scopus 로고    scopus 로고
    • The oscillatory dynamic link matcher for spiking-neuron-based pattern recognition
    • Pichevar R., Rouat J., Tai L. The oscillatory dynamic link matcher for spiking-neuron-based pattern recognition. Neurocomputing 2006, 69:1837-1849.
    • (2006) Neurocomputing , vol.69 , pp. 1837-1849
    • Pichevar, R.1    Rouat, J.2    Tai, L.3
  • 29
    • 84880784039 scopus 로고
    • Pulse computation. Ph.D. Thesis. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
    • Pratt, G. (1990). Pulse computation. Ph.D. Thesis. Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
    • (1990)
    • Pratt, G.1
  • 33
    • 80455156136 scopus 로고    scopus 로고
    • A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons.
    • In 2011 IEEE custom integrated circuits conference, CICC.
    • Seo, J., Brezzo, B., Liu, Y., Parker, B., Esser, S., & Montoye, R. et al. (2011). A 45 nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In 2011 IEEE custom integrated circuits conference, CICC (pp. 1-4).
    • (2011) , pp. 1-4
    • Seo, J.1    Brezzo, B.2    Liu, Y.3    Parker, B.4    Esser, S.5    Montoye, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.