메뉴 건너뛰기




Volumn 21, Issue 4, 2009, Pages 1068-1099

Accelerating event-driven simulation of spiking neurons with multiple synaptic time constants

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ARTICLE; AUTOMATIC SPEECH RECOGNITION; BIOLOGICAL MODEL; COMPUTER SIMULATION; HUMAN; NERVE CELL; PHYSIOLOGY; SYNAPSE; TIME;

EID: 65549102992     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2008.02-08-707     Document Type: Letter
Times cited : (22)

References (35)
  • 2
    • 33745838260 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with synaptic conductances
    • Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural Computation, 18, 2004-2027.
    • (2006) Neural Computation , vol.18 , pp. 2004-2027
    • Brette, R.1
  • 3
    • 35248841297 scopus 로고    scopus 로고
    • Exact simulation of integrate-and-fire models with exponential currents
    • Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural Computation, 19, 2604-2609.
    • (2007) Neural Computation , vol.19 , pp. 2604-2609
    • Brette, R.1
  • 4
    • 0024089177 scopus 로고
    • Calendar queues: A fast O(1) priority queue implementation for the simulation event set problem
    • Brown, R. (1988). Calendar queues: A fast O(1) priority queue implementation for the simulation event set problem. Communications of the ACM, 31, 1220-1227.
    • (1988) Communications of the ACM , vol.31 , pp. 1220-1227
    • Brown, R.1
  • 6
    • 0141499222 scopus 로고    scopus 로고
    • The high-conductance state of neocortical neurons in vivo
    • Destexhe, A., Rudolph, M., & Paré, D. (2003). The high-conductance state of neocortical neurons in vivo. Neuroscience, 4, 739-751.
    • (2003) Neuroscience , vol.4 , pp. 739-751
    • Destexhe, A.1    Rudolph, M.2    Paré, D.3
  • 9
    • 4243496459 scopus 로고    scopus 로고
    • Distributed, event driven simulation of spiking neural networks
    • Canada/Switzerland: ICSC Academic Press, International Computer Science Conventions
    • Grassmann, C., & Anlauf, J. (1998). Distributed, event driven simulation of spiking neural networks. In Proceedings of the International ICSC/IFAC Symposium on Neural Computation (pp. 100-105). Canada/Switzerland: ICSC Academic Press, International Computer Science Conventions.
    • (1998) Proceedings of the International ICSC/IFAC Symposium on Neural Computation , pp. 100-105
    • Grassmann, C.1    Anlauf, J.2
  • 10
    • 0032519099 scopus 로고    scopus 로고
    • On numerical simulations of integrate-and-fire neural networks
    • Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998). On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467-483.
    • (1998) Neural Computation , vol.10 , pp. 467-483
    • Hansel, D.1    Mato, G.2    Meunier, C.3    Neltner, L.4
  • 11
    • 17044361819 scopus 로고    scopus 로고
    • Independent variable time-step integration of individual neurons for network simulations
    • Lytton, W., & Hines, M. (2005). Independent variable time-step integration of individual neurons for network simulations. Neural Computation, 17, 903-921.
    • (2005) Neural Computation , vol.17 , pp. 903-921
    • Lytton, W.1    Hines, M.2
  • 12
    • 0001781836 scopus 로고    scopus 로고
    • Lower bounds for the computational power of networks of spiking neurons
    • Maass, W. (1996). Lower bounds for the computational power of networks of spiking neurons. Neural Computation, 8(1), 1-40.
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 1-40
    • Maass, W.1
  • 13
    • 0036121071 scopus 로고    scopus 로고
    • Synapses as dynamic memory buffers
    • Maass, W., & Markram, H. (2002). Synapses as dynamic memory buffers. Neural Networks, 15, 155-161.
    • (2002) Neural Networks , vol.15 , pp. 155-161
    • Maass, W.1    Markram, H.2
  • 14
    • 0037705272 scopus 로고    scopus 로고
    • Computing and learning with dynamic synapses
    • W. Maass & C. Bishop (Eds.), Cambridge, MA: MIT Press
    • Maass, W., & Zador, A. (1999). Computing and learning with dynamic synapses. In W. Maass & C. Bishop (Eds.), Pulsed neural networks (pp. 321-336). Cambridge, MA: MIT Press.
    • (1999) Pulsed neural networks , pp. 321-336
    • Maass, W.1    Zador, A.2
  • 15
    • 0033850511 scopus 로고    scopus 로고
    • Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons
    • Magee, J., & Cook, E. (2000). Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nature Neuroscience, 3, 895-903.
    • (2000) Nature Neuroscience , vol.3 , pp. 895-903
    • Magee, J.1    Cook, E.2
  • 16
    • 0038454630 scopus 로고    scopus 로고
    • A discrete-event neural network simulator for general neural models
    • Makino, T. (2003). A discrete-event neural network simulator for general neural models. Neural Computing and Applications, 11, 210-223.
    • (2003) Neural Computing and Applications , vol.11 , pp. 210-223
    • Makino, T.1
  • 17
    • 0031801889 scopus 로고    scopus 로고
    • Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses
    • Markram, H., Pikus, D., Gupta, A., & Tsodyks, M. (1998). Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses. Neuropharmacology, 37, 489-500.
    • (1998) Neuropharmacology , vol.37 , pp. 489-500
    • Markram, H.1    Pikus, D.2    Gupta, A.3    Tsodyks, M.4
  • 18
    • 33846013910 scopus 로고    scopus 로고
    • Exact subthreshold integration with continuous spike times in discrete-time neural network simulations
    • Morrison, A., Straube, S., Plesser, H., & Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Computation, 19, 47-79.
    • (2007) Neural Computation , vol.19 , pp. 47-79
    • Morrison, A.1    Straube, S.2    Plesser, H.3    Diesmann, M.4
  • 22
    • 33748464002 scopus 로고    scopus 로고
    • Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies
    • Rudolph, M., & Destexhe, A. (2006). Analytical integrate-and-fire neuron models with conductance-based dynamics for event-driven simulation strategies. Neural Computation, 18, 2146-2210.
    • (2006) Neural Computation , vol.18 , pp. 2146-2210
    • Rudolph, M.1    Destexhe, A.2
  • 23
    • 40649092298 scopus 로고    scopus 로고
    • Compact hardware liquid state machines on FPGA for real-time speech recognition
    • Schrauwen, B., D'Haene, M., Verstraeten, D., & Van Campenhout, J. (2008). Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Networks, 21, 511-523.
    • (2008) Neural Networks , vol.21 , pp. 511-523
    • Schrauwen, B.1    D'Haene, M.2    Verstraeten, D.3    Van Campenhout, J.4
  • 25
    • 0035683779 scopus 로고    scopus 로고
    • Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks
    • Shelley, M., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111-119.
    • (2001) Journal of Computational Neuroscience , vol.11 , pp. 111-119
    • Shelley, M.1    Tao, L.2
  • 26
    • 0028958991 scopus 로고
    • Simple codes versus efficient codes
    • Softky, W. R. (1995). Simple codes versus efficient codes. Current Opinion in Neurobiology, 5, 239-247.
    • (1995) Current Opinion in Neurobiology , vol.5 , pp. 239-247
    • Softky, W.R.1
  • 27
    • 0032106255 scopus 로고    scopus 로고
    • Input synchrony and the irregular firing of cortical neurons
    • Stevens, C., & Zador, A. (1998). Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience, 1, 210-217.
    • (1998) Nature Neuroscience , vol.1 , pp. 210-217
    • Stevens C1    Zador, A.2
  • 29
    • 0029535607 scopus 로고
    • Historical development of the Newton-Raphson method. SIREV
    • Tjalling, J. (1995). Historical development of the Newton-Raphson method. SIREV, 37, 531-551.
    • (1995) , vol.37 , pp. 531-551
    • Tjalling, J.1
  • 30
    • 36849012131 scopus 로고    scopus 로고
    • Event-driven simulations of nonlinear integrate-and-fire neurons
    • Tonnelier, A. (2007). Event-driven simulations of nonlinear integrate-and-fire neurons. Neural Computation, 19, 3226-3238.
    • (2007) Neural Computation , vol.19 , pp. 3226-3238
    • Tonnelier, A.1
  • 31
    • 33646165467 scopus 로고    scopus 로고
    • Synergies between intrinsic and synaptic plasticity in individual model neurons
    • L. K. Saul, Y. Weiss, & L. Bottou (Eds.)
    • Triesch, J. (2005). Synergies between intrinsic and synaptic plasticity in individual model neurons. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems, 17 (pp. 1417-1425).
    • (2005) Advances in neural information processing systems , vol.17 , pp. 1417-1425
    • Triesch, J.1
  • 32
    • 0034551719 scopus 로고    scopus 로고
    • Stable Hebbian learning from spike timing-dependent plasticity
    • van Rossum, M., Bi, G., & Turrigiano, G. (2000). Stable Hebbian learning from spike timing-dependent plasticity. Journal of Neuroscience, 20(23), 8812-8821.
    • (2000) Journal of Neuroscience , vol.20 , Issue.23 , pp. 8812-8821
    • van Rossum, M.1    Bi, G.2    Turrigiano, G.3
  • 35
    • 0037907084 scopus 로고
    • Event-driven simulation of networks of spiking neurons
    • San Francisco: Morgan Kaufmann
    • Watts, L. (1993). Event-driven simulation of networks of spiking neurons. In Sixth Neural Information Processing Systems Conference (pp. 927-934). San Francisco: Morgan Kaufmann.
    • (1993) Sixth Neural Information Processing Systems Conference , pp. 927-934
    • Watts, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.