메뉴 건너뛰기




Volumn 8, Issue 7, 2013, Pages

An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84879771268     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0067672     Document Type: Article
Times cited : (26)

References (91)
  • 2
    • 19944422061 scopus 로고    scopus 로고
    • A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
    • Paik S, Shak S, Tang G, Kim C, Baker J, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine 351: 2817-2826.
    • (2004) New England Journal of Medicine , vol.351 , pp. 2817-2826
    • Paik, S.1    Shak, S.2    Tang, G.3    Kim, C.4    Baker, J.5
  • 4
    • 82955223524 scopus 로고    scopus 로고
    • Bayesian variable selection regression for genome-wide association studies and other large-scale problems
    • Guan Y, Stephens M, (2011) Bayesian variable selection regression for genome-wide association studies and other large-scale problems. The Annals of Applied Statistics 5: 1780-1815.
    • (2011) The Annals of Applied Statistics , vol.5 , pp. 1780-1815
    • Guan, Y.1    Stephens, M.2
  • 5
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 6
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D, Rocke D, (2002) Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 18: 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.1    Rocke, D.2
  • 7
    • 12344294601 scopus 로고    scopus 로고
    • Bagboosting for tumor classification with gene expression data
    • Dettling M, (2004) Bagboosting for tumor classification with gene expression data. Bioinformatics 20: 3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • Dettling, M.1
  • 8
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • Smyth G, (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 3: 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. 3
    • Smyth, G.1
  • 9
    • 0002632234 scopus 로고
    • An introduction to empirical bayes data analysis
    • Casella G, (1985) An introduction to empirical bayes data analysis. The American Statistician 39: 83-87.
    • (1985) The American Statistician , vol.39 , pp. 83-87
    • Casella, G.1
  • 11
    • 0003971926 scopus 로고    scopus 로고
    • Subset selection in regression
    • Miller A (2002) Subset selection in regression. Chapman & Hall/CRC.
    • (2002) Chapman & Hall/CRC
    • Miller, A.1
  • 13
    • 0031526204 scopus 로고    scopus 로고
    • Approaches for bayesian variable selection
    • George E, McCulloch R, (1997) Approaches for bayesian variable selection. Statistica Sinica 7: 339-374.
    • (1997) Statistica Sinica , vol.7 , pp. 339-374
    • George, E.1    McCulloch, R.2
  • 16
    • 0000647838 scopus 로고    scopus 로고
    • Variable selection and model comparison in regression
    • Geweke J, (1996) Variable selection and model comparison in regression. Bayesian statistics 5: 609-620.
    • (1996) Bayesian Statistics , vol.5 , pp. 609-620
    • Geweke, J.1
  • 17
    • 77956889087 scopus 로고
    • Reversible jump markov chain monte carlo computation and bayesian model determination
    • Green P, (1995) Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82: 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 18
    • 3042586796 scopus 로고    scopus 로고
    • Sampling schemes for bayesian variable selection in generalized linear models
    • Nott D, Leonte D, (2004) Sampling schemes for bayesian variable selection in generalized linear models. Journal of Computational and Graphical Statistics 13: 362-382.
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , pp. 362-382
    • Nott, D.1    Leonte, D.2
  • 19
    • 55949101597 scopus 로고    scopus 로고
    • Bayesian variable selection and computation for generalized linear models with conjugate priors
    • Chen M, Huang L, Ibrahim J, Kim S, (2008) Bayesian variable selection and computation for generalized linear models with conjugate priors. Bayesian analysis (Online) 3: 585.
    • (2008) Bayesian Analysis (Online) , vol.3 , pp. 585
    • Chen, M.1    Huang, L.2    Ibrahim, J.3    Kim, S.4
  • 21
    • 2442597278 scopus 로고    scopus 로고
    • Mapping multiple qtl using linkage disequilibrium and linkage analysis information and multitrait data
    • Meuwissen T, Goddard M, (2004) Mapping multiple qtl using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol 36: 261-279.
    • (2004) Genet Sel Evol , vol.36 , pp. 261-279
    • Meuwissen, T.1    Goddard, M.2
  • 23
    • 69249230467 scopus 로고    scopus 로고
    • A review of bayesian variable selection methods: what, how and which
    • O'Hara R, Sillanpää M, (2009) A review of bayesian variable selection methods: what, how and which. Bayesian Analysis 4: 85-117.
    • (2009) Bayesian Analysis , vol.4 , pp. 85-117
    • O'Hara, R.1    Sillanpää, M.2
  • 24
    • 0036606954 scopus 로고    scopus 로고
    • Model choice in gene mapping: what and why
    • Sillanpää M, Corander J, (2002) Model choice in gene mapping: what and why. Trends in Genetics 18: 301-307.
    • (2002) Trends in Genetics , vol.18 , pp. 301-307
    • Sillanpää, M.1    Corander, J.2
  • 25
    • 33745626428 scopus 로고    scopus 로고
    • Bayesian mapping of genotype× expression interactions in quantitative and qualitative traits
    • Hoti F, Sillanpää M, (2006) Bayesian mapping of genotype× expression interactions in quantitative and qualitative traits. Heredity 97: 4-18.
    • (2006) Heredity , vol.97 , pp. 4-18
    • Hoti, F.1    Sillanpää, M.2
  • 26
    • 0042208380 scopus 로고    scopus 로고
    • Stochastic search variable selection for identifying multiple quantitative trait loci
    • Yi N, George V, Allison D, (2003) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164: 1129-1138.
    • (2003) Genetics , vol.164 , pp. 1129-1138
    • Yi, N.1    George, V.2    Allison, D.3
  • 27
    • 0041356952 scopus 로고    scopus 로고
    • Bayesian analysis of multilocus association in quantitative and qualitative traits
    • Kilpikari R, Sillanpää M, (2003) Bayesian analysis of multilocus association in quantitative and qualitative traits. Genetic epidemiology 25: 122-135.
    • (2003) Genetic Epidemiology , vol.25 , pp. 122-135
    • Kilpikari, R.1    Sillanpää, M.2
  • 28
    • 49849103360 scopus 로고    scopus 로고
    • Bayesian lasso for quantitative trait loci mapping
    • Yi N, Xu S, (2008) Bayesian lasso for quantitative trait loci mapping. Genetics 179: 1045-1055.
    • (2008) Genetics , vol.179 , pp. 1045-1055
    • Yi, N.1    Xu, S.2
  • 29
    • 0034948896 scopus 로고    scopus 로고
    • A bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    • Baldi P, Long A, (2001) A bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.2
  • 30
    • 48249096806 scopus 로고    scopus 로고
    • Simultaneous analysis of all snps in genomewide and re-sequencing association studies
    • Hoggart C, Whittaker J, De Iorio M, Balding D, (2008) Simultaneous analysis of all snps in genomewide and re-sequencing association studies. PLoS Genetics 4: e1000130.
    • (2008) PLoS Genetics , vol.4
    • Hoggart, C.1    Whittaker, J.2    De Iorio, M.3    Balding, D.4
  • 31
    • 66049114148 scopus 로고    scopus 로고
    • Bayes factors for genome-wide association studies: comparison with p-values
    • Wakefield J, (2008) Bayes factors for genome-wide association studies: comparison with p-values. Genetic epidemiology 33: 79-86.
    • (2008) Genetic Epidemiology , vol.33 , pp. 79-86
    • Wakefield, J.1
  • 33
    • 0042744696 scopus 로고    scopus 로고
    • Detecting differentially expressed genes in microarrays using Bayesian model selection
    • Ishwaran H, Rao J, (2003) Detecting differentially expressed genes in microarrays using Bayesian model selection. Journal of the American Statistical Association 98: 438-455.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 438-455
    • Ishwaran, H.1    Rao, J.2
  • 35
    • 33745606461 scopus 로고    scopus 로고
    • A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays
    • McLachlan G, Bean R, Jones L, (2006) A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. Bioinformatics 22: 1608-1615.
    • (2006) Bioinformatics , vol.22 , pp. 1608-1615
    • McLachlan, G.1    Bean, R.2    Jones, L.3
  • 36
    • 35348825777 scopus 로고    scopus 로고
    • Variable selection in regression mixture modeling for the discovery of gene regulatory networks
    • Gupta M, Ibrahim J, (2007) Variable selection in regression mixture modeling for the discovery of gene regulatory networks. Journal of the American Statistical Association 102: 867-880.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 867-880
    • Gupta, M.1    Ibrahim, J.2
  • 38
    • 80053590625 scopus 로고    scopus 로고
    • Incorporating biological information into linear models: a bayesian approach to the selection of pathways and genes
    • Stingo F, Chen Y, Tadesse M, Vannucci M, (2011) Incorporating biological information into linear models: a bayesian approach to the selection of pathways and genes. The Annals of Applied Statistics 5: 1978-2002.
    • (2011) The Annals of Applied Statistics , vol.5 , pp. 1978-2002
    • Stingo, F.1    Chen, Y.2    Tadesse, M.3    Vannucci, M.4
  • 39
    • 10744224439 scopus 로고    scopus 로고
    • Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria
    • Mootha V, Bunkenborg J, Olsen J, Hjerrild M, Wisniewski J, et al. (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115: 629-640.
    • (2003) Cell , vol.115 , pp. 629-640
    • Mootha, V.1    Bunkenborg, J.2    Olsen, J.3    Hjerrild, M.4    Wisniewski, J.5
  • 41
    • 33746621756 scopus 로고    scopus 로고
    • Transcriptional profiling of aging in human muscle reveals a common aging signature
    • Zahn J, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, et al. (2006) Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS genetics 2: e115.
    • (2006) PLoS Genetics , vol.2
    • Zahn, J.1    Sonu, R.2    Vogel, H.3    Crane, E.4    Mazan-Mamczarz, K.5
  • 42
    • 52149097555 scopus 로고    scopus 로고
    • Regulatory networks define phenotypic classes of human stem cell lines
    • Müller F, Laurent L, Kostka D, Ulitsky I, Williams R, et al. (2008) Regulatory networks define phenotypic classes of human stem cell lines. Nature 455: 401-405.
    • (2008) Nature , vol.455 , pp. 401-405
    • Müller, F.1    Laurent, L.2    Kostka, D.3    Ulitsky, I.4    Williams, R.5
  • 43
    • 78649419087 scopus 로고    scopus 로고
    • Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics
    • Li F, Zhang N, (2010) Bayesian variable selection in structured high-dimensional covariate spaces with applications in genomics. Journal of the American Statistical Association 105: 1202-1214.
    • (2010) Journal of the American Statistical Association , vol.105 , pp. 1202-1214
    • Li, F.1    Zhang, N.2
  • 52
    • 84868213569 scopus 로고    scopus 로고
    • Criteria for bayesian model choice with application to variable selection
    • Bayarri M, Berger J, Forte A, García-Donato G, (2012) Criteria for bayesian model choice with application to variable selection. The Annals of Statistics 40: 1550-1577.
    • (2012) The Annals of Statistics , vol.40 , pp. 1550-1577
    • Bayarri, M.1    Berger, J.2    Forte, A.3    García-Donato, G.4
  • 55
    • 0001709577 scopus 로고    scopus 로고
    • Properties of intrinsic and fractional bayes factors
    • O'Hagan A, (1997) Properties of intrinsic and fractional bayes factors. Test 6: 101-118.
    • (1997) Test , vol.6 , pp. 101-118
    • O'Hagan, A.1
  • 56
    • 23544470859 scopus 로고    scopus 로고
    • Expected-posterior prior distributions for model selection
    • Pérez J, Berger J, (2002) Expected-posterior prior distributions for model selection. Biometrika 89: 491-512.
    • (2002) Biometrika , vol.89 , pp. 491-512
    • Pérez, J.1    Berger, J.2
  • 57
    • 57649143923 scopus 로고    scopus 로고
    • Integral equation solutions as prior distributions for Bayesian model selection
    • Cano J, Salmerón D, Robert C, (2008) Integral equation solutions as prior distributions for Bayesian model selection. Test 17: 493-504.
    • (2008) Test , vol.17 , pp. 493-504
    • Cano, J.1    Salmerón, D.2    Robert, C.3
  • 61
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data
    • Newton M, Kendziorski C, Richmond C, Blattner F, Tsui K, (2001) On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. Journal of computational biology 8: 37-52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.1    Kendziorski, C.2    Richmond, C.3    Blattner, F.4    Tsui, K.5
  • 62
    • 14844326483 scopus 로고    scopus 로고
    • Computational prediction of human metabolic pathways from the complete human genome
    • Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, et al. (2005) Computational prediction of human metabolic pathways from the complete human genome. Genome Biology 6: R2.
    • (2005) Genome Biology , vol.6
    • Romero, P.1    Wagg, J.2    Green, M.L.3    Kaiser, D.4    Krummenacker, M.5
  • 63
    • 0028926048 scopus 로고
    • Protein-protein interactions: Methods for detection and analysis
    • Phizicky E, Fields S, (1995) Protein-protein interactions: Methods for detection and analysis. Microbiological Reviews 59: 94-123.
    • (1995) Microbiological Reviews , vol.59 , pp. 94-123
    • Phizicky, E.1    Fields, S.2
  • 65
    • 0034568109 scopus 로고    scopus 로고
    • Gene shaving'as a method for identifying distinct sets of genes with similar expression patterns
    • Hastie T, Tibshirani R, Eisen M, Alizadeh A, Levy R, et al. (2000) Gene shaving'as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol 1: 1-0003.
    • (2000) Genome Biol , vol.1 , pp. 1-0003
    • Hastie, T.1    Tibshirani, R.2    Eisen, M.3    Alizadeh, A.4    Levy, R.5
  • 66
    • 0035591051 scopus 로고    scopus 로고
    • On the relationship between markov chain monte carlo methods for model uncertainty
    • Godsill S, (2001) On the relationship between markov chain monte carlo methods for model uncertainty. Journal of Computational and Graphical Statistics 10: 230-248.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 230-248
    • Godsill, S.1
  • 67
    • 3142780649 scopus 로고    scopus 로고
    • A unified markov chain monte carlo framework for mapping multiple quantitative trait loci
    • Yi N, (2004) A unified markov chain monte carlo framework for mapping multiple quantitative trait loci. Genetics 167: 967-975.
    • (2004) Genetics , vol.167 , pp. 967-975
    • Yi, N.1
  • 68
    • 0016128505 scopus 로고
    • Regressions by leaps and bounds
    • Furnival G, Wilson R, (1974) Regressions by leaps and bounds. Technometrics 16: 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.1    Wilson, R.2
  • 69
    • 62849108422 scopus 로고    scopus 로고
    • Iterative bayesian model averaging: A method for the application of survival analysis to high-dimensional microarray data
    • Annest A, Bumgarner R, Raftery A, Yeung K, (2009) Iterative bayesian model averaging: A method for the application of survival analysis to high-dimensional microarray data. BMC bioinformatics 10: 72.
    • (2009) BMC Bioinformatics , vol.10 , pp. 72
    • Annest, A.1    Bumgarner, R.2    Raftery, A.3    Yeung, K.4
  • 70
    • 77950497193 scopus 로고    scopus 로고
    • Bayesian variable selection for disease classification using gene expression data
    • Yang AJ, Song XY, (2010) Bayesian variable selection for disease classification using gene expression data. Bioinformatics 26: 215-222.
    • (2010) Bioinformatics , vol.26 , pp. 215-222
    • Yang, A.J.1    Song, X.Y.2
  • 71
    • 84866530511 scopus 로고    scopus 로고
    • Parallel markov chain monte carlobridging the gap to high-performance bayesian computation in animal breeding and genetics
    • Wu X, Sun C, Beissinger T, Rosa G, Weigel K, et al. (2012) Parallel markov chain monte carlobridging the gap to high-performance bayesian computation in animal breeding and genetics. Genetics Selection Evolution 44: 29.
    • (2012) Genetics Selection Evolution , vol.44 , pp. 29
    • Wu, X.1    Sun, C.2    Beissinger, T.3    Rosa, G.4    Weigel, K.5
  • 72
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin D, (1992) Inference from iterative simulation using multiple sequences. Statistical science 7: 457-472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 74
    • 79951556894 scopus 로고    scopus 로고
    • Stochastic matching pursuit for bayesian variable selection
    • Chen R, Chu C, Lai T, Wu Y, (2011) Stochastic matching pursuit for bayesian variable selection. Statistics and Computing 21: 247-259.
    • (2011) Statistics and Computing , vol.21 , pp. 247-259
    • Chen, R.1    Chu, C.2    Lai, T.3    Wu, Y.4
  • 75
    • 84860811237 scopus 로고    scopus 로고
    • Integrating biological knowledge into variable selection: an empirical bayes approach with an application in cancer biology
    • Hill S, Neve R, Bayani N, Kuo W, Ziyad S, et al. (2012) Integrating biological knowledge into variable selection: an empirical bayes approach with an application in cancer biology. BMC bioinformatics 13: 94.
    • (2012) BMC Bioinformatics , vol.13 , pp. 94
    • Hill, S.1    Neve, R.2    Bayani, N.3    Kuo, W.4    Ziyad, S.5
  • 76
    • 33847162468 scopus 로고    scopus 로고
    • Hiv-1 viral fitness estimation using exchangeable on subsets priors and prior model selection
    • Kitchen C, Weiss R, Liu G, Wrin T, (2007) Hiv-1 viral fitness estimation using exchangeable on subsets priors and prior model selection. Statistics in medicine 26: 975-990.
    • (2007) Statistics in Medicine , vol.26 , pp. 975-990
    • Kitchen, C.1    Weiss, R.2    Liu, G.3    Wrin, T.4
  • 79
    • 77649299348 scopus 로고    scopus 로고
    • An atlas of combinatorial transcriptional regulation in mouse and man
    • Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, et al. (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140: 744-752.
    • (2010) Cell , vol.140 , pp. 744-752
    • Ravasi, T.1    Suzuki, H.2    Cannistraci, C.V.3    Katayama, S.4    Bajic, V.B.5
  • 80
    • 57349137697 scopus 로고    scopus 로고
    • A novel method incorporating gene ontology information for unsupervised clustering and feature selection
    • Srivastava S, Zhang L, Jin R, Chan C, (2008) A novel method incorporating gene ontology information for unsupervised clustering and feature selection. PloS one 3: e3860.
    • (2008) PloS One , vol.3
    • Srivastava, S.1    Zhang, L.2    Jin, R.3    Chan, C.4
  • 82
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using occam's window
    • Madigan D, Raftery A, (1994) Model selection and accounting for model uncertainty in graphical models using occam's window. Journal of the American Statistical Association 89: 1535-1546.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.2
  • 84
    • 34547844074 scopus 로고    scopus 로고
    • A markov random field model for network-based analysis of genomic data
    • Wei Z, Li H, (2007) A markov random field model for network-based analysis of genomic data. Bioinformatics 23: 1537-1544.
    • (2007) Bioinformatics , vol.23 , pp. 1537-1544
    • Wei, Z.1    Li, H.2
  • 85
    • 58149358843 scopus 로고    scopus 로고
    • The combined approach to lysis utilizing eptifibatide and rt-pa in acute ischemic stroke the clear stroke trial
    • Pancioli A, Broderick J, Brott T, Tomsick T, Khoury J, et al. (2008) The combined approach to lysis utilizing eptifibatide and rt-pa in acute ischemic stroke the clear stroke trial. Stroke 39: 3268-3276.
    • (2008) Stroke , vol.39 , pp. 3268-3276
    • Pancioli, A.1    Broderick, J.2    Brott, T.3    Tomsick, T.4    Khoury, J.5
  • 86
    • 77957982191 scopus 로고    scopus 로고
    • Gene expression profiling of blood for the prediction of ischemic stroke
    • Stamova B, Xu H, Jickling G, Bushnell C, Tian Y, et al. (2010) Gene expression profiling of blood for the prediction of ischemic stroke. Stroke 41: 2171-2177.
    • (2010) Stroke , vol.41 , pp. 2171-2177
    • Stamova, B.1    Xu, H.2    Jickling, G.3    Bushnell, C.4    Tian, Y.5
  • 87
  • 89
    • 0030614340 scopus 로고    scopus 로고
    • Interleukin (il) 1β, il-1 receptor antagonist, il-10, and il-13 gene expression in the central nervous system and anterior pituitary during systemic inammation: pathophysiological implications
    • Wong M, Bongiorno P, Rettori V, McCann S, Licinio J, (1997) Interleukin (il) 1β, il-1 receptor antagonist, il-10, and il-13 gene expression in the central nervous system and anterior pituitary during systemic inammation: pathophysiological implications. Proceedings of the National Academy of Sciences 94: 227-232.
    • (1997) Proceedings of the National Academy of Sciences , vol.94 , pp. 227-232
    • Wong, M.1    Bongiorno, P.2    Rettori, V.3    McCann, S.4    Licinio, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.