-
1
-
-
51749110466
-
Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
-
Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
-
(2008)
Genome Biol.
, vol.9
-
-
Covington, M.F.1
-
2
-
-
0037783233
-
Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis
-
Michael T.P., McClung C.R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol. 2003, 132:629-639.
-
(2003)
Plant Physiol.
, vol.132
, pp. 629-639
-
-
Michael, T.P.1
McClung, C.R.2
-
3
-
-
0034671791
-
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
-
Harmer S.L., et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290:2110-2113.
-
(2000)
Science
, vol.290
, pp. 2110-2113
-
-
Harmer, S.L.1
-
4
-
-
62349089764
-
Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
-
Hazen S.P., et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol. 2009, 10:R17.
-
(2009)
Genome Biol.
, vol.10
-
-
Hazen, S.P.1
-
6
-
-
66449087281
-
The circadian system in higher plants
-
Harmer S.L. The circadian system in higher plants. Annu. Rev. Plant Biol. 2009, 60:357-377.
-
(2009)
Annu. Rev. Plant Biol.
, vol.60
, pp. 357-377
-
-
Harmer, S.L.1
-
7
-
-
70349546322
-
Time for circadian rhythms: plants get synchronized
-
Mas P., Yanovsky M.J. Time for circadian rhythms: plants get synchronized. Curr. Opin. Plant Biol. 2009, 12:574-579.
-
(2009)
Curr. Opin. Plant Biol.
, vol.12
, pp. 574-579
-
-
Mas, P.1
Yanovsky, M.J.2
-
8
-
-
33845967084
-
Regulation of output from the plant circadian clock
-
Yakir E., et al. Regulation of output from the plant circadian clock. FEBS J. 2007, 274:335-345.
-
(2007)
FEBS J.
, vol.274
, pp. 335-345
-
-
Yakir, E.1
-
9
-
-
0031836977
-
Molecular intrigue between phototransduction and the circadian clock
-
Millar A.J. Molecular intrigue between phototransduction and the circadian clock. Ann. Bot. 1998, 81:581-587.
-
(1998)
Ann. Bot.
, vol.81
, pp. 581-587
-
-
Millar, A.J.1
-
10
-
-
0035179096
-
Molecular bases of circadian rhythms
-
Harmer S.L., et al. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 2001, 17:215-253.
-
(2001)
Annu. Rev. Cell Dev. Biol.
, vol.17
, pp. 215-253
-
-
Harmer, S.L.1
-
12
-
-
70450173299
-
Weather and seasons together demand complex biological clocks
-
Troein C., et al. Weather and seasons together demand complex biological clocks. Curr. Biol. 2009, 19:1961-1964.
-
(2009)
Curr. Biol.
, vol.19
, pp. 1961-1964
-
-
Troein, C.1
-
13
-
-
0032555144
-
Resonating circadian clocks enhance fitness in cyanobacteria
-
Ouyang Y., et al. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:8660-8664.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 8660-8664
-
-
Ouyang, Y.1
-
14
-
-
0035044054
-
Endogenous timekeepers in photosynthetic organisms
-
Johnson C.H. Endogenous timekeepers in photosynthetic organisms. Annu. Rev. Physiol. 2001, 63:695-728.
-
(2001)
Annu. Rev. Physiol.
, vol.63
, pp. 695-728
-
-
Johnson, C.H.1
-
15
-
-
22744451756
-
Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
-
Dodd A.N., et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309:630-633.
-
(2005)
Science
, vol.309
, pp. 630-633
-
-
Dodd, A.N.1
-
16
-
-
34447520296
-
Rhythmic growth explained by coincidence between internal and external cues
-
Nozue K., et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007, 448:358-361.
-
(2007)
Nature
, vol.448
, pp. 358-361
-
-
Nozue, K.1
-
17
-
-
0030465411
-
Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis
-
Millar A.J., Kay S.A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:15491-15496.
-
(1996)
Proc. Natl. Acad. Sci. U. S. A.
, vol.93
, pp. 15491-15496
-
-
Millar, A.J.1
Kay, S.A.2
-
18
-
-
70349243166
-
A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis
-
Penfield S., Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 2009, 21:1722-1732.
-
(2009)
Plant Cell
, vol.21
, pp. 1722-1732
-
-
Penfield, S.1
Hall, A.2
-
19
-
-
51549089224
-
Circadian timekeeping during early Arabidopsis development
-
Salome P.A., et al. Circadian timekeeping during early Arabidopsis development. Plant Physiol. 2008, 147:1110-1125.
-
(2008)
Plant Physiol.
, vol.147
, pp. 1110-1125
-
-
Salome, P.A.1
-
20
-
-
0032303006
-
Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings
-
Zhong H.H., et al. Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell 1998, 10:2005-2017.
-
(1998)
Plant Cell
, vol.10
, pp. 2005-2017
-
-
Zhong, H.H.1
-
21
-
-
33644814040
-
ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY
-
Kikis E.A., et al. ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 2005, 44:300-313.
-
(2005)
Plant J.
, vol.44
, pp. 300-313
-
-
Kikis, E.A.1
-
22
-
-
33751239436
-
Multiple phytohormones influence distinct parameters of the plant circadian clock
-
Hanano S., et al. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 2006, 11:1381-1392.
-
(2006)
Genes Cells
, vol.11
, pp. 1381-1392
-
-
Hanano, S.1
-
23
-
-
34548206704
-
The circadian clock regulates auxin signaling and responses in Arabidopsis
-
Covington M.F., Harmer S.L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLOS Biol. 2007, 5:1773-1784.
-
(2007)
PLOS Biol.
, vol.5
, pp. 1773-1784
-
-
Covington, M.F.1
Harmer, S.L.2
-
24
-
-
37249077411
-
The Arabidopsis circadian clock incorporates a cADPR-based feedback loop
-
Dodd A.N., et al. The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 2007, 318:1789-1792.
-
(2007)
Science
, vol.318
, pp. 1789-1792
-
-
Dodd, A.N.1
-
25
-
-
40849124054
-
Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants
-
Mizuno T., Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol. 2008, 49:481-487.
-
(2008)
Plant Cell Physiol.
, vol.49
, pp. 481-487
-
-
Mizuno, T.1
Yamashino, T.2
-
26
-
-
71449108624
-
TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought
-
Legnaioli T., et al. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 2009, 28:3745-3757.
-
(2009)
EMBO J.
, vol.28
, pp. 3745-3757
-
-
Legnaioli, T.1
-
27
-
-
0034095041
-
Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds
-
Kurup S., et al. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 2000, 21:143-155.
-
(2000)
Plant J.
, vol.21
, pp. 143-155
-
-
Kurup, S.1
-
28
-
-
77953911521
-
A functional connection between the clock component TOC1 and abscisic acid signaling pathways
-
Castells E., et al. A functional connection between the clock component TOC1 and abscisic acid signaling pathways. Plant Signal. Behav. 2010, 5:409-411.
-
(2010)
Plant Signal. Behav.
, vol.5
, pp. 409-411
-
-
Castells, E.1
-
29
-
-
15944412159
-
Of light and length: regulation of hypocotyl growth in Arabidopsis
-
Vandenbussche F., et al. Of light and length: regulation of hypocotyl growth in Arabidopsis. Bioessays 2005, 27:275-284.
-
(2005)
Bioessays
, vol.27
, pp. 275-284
-
-
Vandenbussche, F.1
-
30
-
-
0346258011
-
Gating of the rapid shade-avoidance response by the circadian clock in plants
-
Salter M.G., et al. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 2003, 426:680-683.
-
(2003)
Nature
, vol.426
, pp. 680-683
-
-
Salter, M.G.1
-
31
-
-
54749087162
-
A morning-specific phytohormone gene expression program underlying rhythmic plant growth
-
Michael T.P., et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLOS Biol. 2008, 6:e225.
-
(2008)
PLOS Biol.
, vol.6
-
-
Michael, T.P.1
-
32
-
-
13744263437
-
BHLH class transcription factors take centre stage in phytochrome signalling
-
Duek P.D., Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci. 2005, 10:51-54.
-
(2005)
Trends Plant Sci.
, vol.10
, pp. 51-54
-
-
Duek, P.D.1
Fankhauser, C.2
-
33
-
-
38549167870
-
A molecular framework for light and gibberellin control of cell elongation
-
de Lucas M., et al. A molecular framework for light and gibberellin control of cell elongation. Nature 2008, 451:480-484.
-
(2008)
Nature
, vol.451
, pp. 480-484
-
-
de Lucas, M.1
-
34
-
-
38549142539
-
Coordinated regulation of Arabidopsis thaliana development by light and gibberellins
-
Feng S., et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 2008, 451:475-479.
-
(2008)
Nature
, vol.451
, pp. 475-479
-
-
Feng, S.1
-
35
-
-
70349741081
-
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways
-
Rawat R., et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:16883-16888.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 16883-16888
-
-
Rawat, R.1
-
36
-
-
55949116196
-
A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana
-
Loudet O., et al. A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:17193-17198.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 17193-17198
-
-
Loudet, O.1
-
37
-
-
0035047711
-
Genetic and molecular analysis of circadian rhythms in Neurospora
-
Loros J.J., Dunlap J.C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol. 2001, 63:757-794.
-
(2001)
Annu. Rev. Physiol.
, vol.63
, pp. 757-794
-
-
Loros, J.J.1
Dunlap, J.C.2
-
38
-
-
33745453173
-
The molecular basis of temperature compensation in the Arabidopsis circadian clock
-
Gould P.D., et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 2006, 18:1177-1187.
-
(2006)
Plant Cell
, vol.18
, pp. 1177-1187
-
-
Gould, P.D.1
-
39
-
-
50649124284
-
Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome
-
Bieniawska Z., et al. Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol. 2008, 147:263-279.
-
(2008)
Plant Physiol.
, vol.147
, pp. 263-279
-
-
Bieniawska, Z.1
-
40
-
-
18744413036
-
Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock
-
Fowler S.G., et al. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005, 137:961-968.
-
(2005)
Plant Physiol.
, vol.137
, pp. 961-968
-
-
Fowler, S.G.1
-
41
-
-
2942733588
-
Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems
-
Maruyama K., et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004, 38:982-993.
-
(2004)
Plant J.
, vol.38
, pp. 982-993
-
-
Maruyama, K.1
-
42
-
-
71049138076
-
The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis
-
Kidokoro S., et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 2009, 151:2046-2057.
-
(2009)
Plant Physiol.
, vol.151
, pp. 2046-2057
-
-
Kidokoro, S.1
-
43
-
-
70349852402
-
A role for circadian evening elements in cold-regulated gene expression in Arabidopsis
-
Mikkelsen M.D., Thomashow M.F. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009, 60:328-339.
-
(2009)
Plant J.
, vol.60
, pp. 328-339
-
-
Mikkelsen, M.D.1
Thomashow, M.F.2
-
44
-
-
28244451860
-
Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis
-
Cao S., et al. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 2005, 24:683-690.
-
(2005)
Plant Cell Rep.
, vol.24
, pp. 683-690
-
-
Cao, S.1
-
45
-
-
63049122216
-
Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response
-
Nakamichi N., et al. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 2009, 50:447-462.
-
(2009)
Plant Cell Physiol.
, vol.50
, pp. 447-462
-
-
Nakamichi, N.1
-
46
-
-
66349124175
-
Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination
-
Fukushima A., et al. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:7251-7256.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 7251-7256
-
-
Fukushima, A.1
-
47
-
-
33644813858
-
Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis
-
Harmer S.L., Kay S.A. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 2005, 17:1926-1940.
-
(2005)
Plant Cell
, vol.17
, pp. 1926-1940
-
-
Harmer, S.L.1
Kay, S.A.2
-
48
-
-
0035800467
-
Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
-
Alabadi D., et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001, 293:880-883.
-
(2001)
Science
, vol.293
, pp. 880-883
-
-
Alabadi, D.1
-
49
-
-
53249084807
-
The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors
-
Gong W., et al. The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol. Plant 2008, 1:27-41.
-
(2008)
Mol. Plant
, vol.1
, pp. 27-41
-
-
Gong, W.1
-
50
-
-
34547105040
-
Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis
-
Zhang X., et al. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant J. 2007, 51:512-525.
-
(2007)
Plant J.
, vol.51
, pp. 512-525
-
-
Zhang, X.1
-
51
-
-
0142060793
-
The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis
-
Kuno N., et al. The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 2003, 15:2476-2488.
-
(2003)
Plant Cell
, vol.15
, pp. 2476-2488
-
-
Kuno, N.1
-
52
-
-
35949004478
-
Mechanical stress induces biotic and abiotic stress responses via a novel cis-element
-
Walley J.W., et al. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLOS Genet. 2007, 3:1800-1812.
-
(2007)
PLOS Genet.
, vol.3
, pp. 1800-1812
-
-
Walley, J.W.1
-
53
-
-
0032103771
-
Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat
-
Kurepa J., et al. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 1998, 14:759-764.
-
(1998)
Plant J.
, vol.14
, pp. 759-764
-
-
Kurepa, J.1
-
54
-
-
33645461970
-
The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis
-
Cao S., et al. The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul. 2006, 48:261-270.
-
(2006)
Plant Growth Regul.
, vol.48
, pp. 261-270
-
-
Cao, S.1
-
55
-
-
43449118706
-
Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses
-
Kant P., et al. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ. 2008, 31:697-714.
-
(2008)
Plant Cell Environ.
, vol.31
, pp. 697-714
-
-
Kant, P.1
-
56
-
-
44949113265
-
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage
-
Turck F., et al. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 2008, 59:573-594.
-
(2008)
Annu. Rev. Plant Biol.
, vol.59
, pp. 573-594
-
-
Turck, F.1
-
57
-
-
34948866143
-
Move on up, it's time for change - mobile signals controlling photoperiod-dependent flowering
-
Kobayashi Y., Weigel D. Move on up, it's time for change - mobile signals controlling photoperiod-dependent flowering. Gene Dev. 2007, 21:2371-2384.
-
(2007)
Gene Dev.
, vol.21
, pp. 2371-2384
-
-
Kobayashi, Y.1
Weigel, D.2
-
58
-
-
0035953691
-
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis
-
Suarez-Lopez P., et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410:1116-1120.
-
(2001)
Nature
, vol.410
, pp. 1116-1120
-
-
Suarez-Lopez, P.1
-
59
-
-
1142286356
-
Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering
-
Valverde F., et al. Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering. Science 2004, 303:1003-1006.
-
(2004)
Science
, vol.303
, pp. 1003-1006
-
-
Valverde, F.1
-
60
-
-
0344443180
-
FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis
-
Imaizumi T., et al. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 2003, 426:302-306.
-
(2003)
Nature
, vol.426
, pp. 302-306
-
-
Imaizumi, T.1
-
61
-
-
67650473072
-
Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response
-
Fornara F., et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 2009, 17:75-86.
-
(2009)
Dev. Cell
, vol.17
, pp. 75-86
-
-
Fornara, F.1
-
62
-
-
35348910170
-
FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis
-
Sawa M., et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 2007, 318:261-265.
-
(2007)
Science
, vol.318
, pp. 261-265
-
-
Sawa, M.1
-
63
-
-
0034724516
-
FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis
-
Nelson D.C., et al. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 2000, 101:331-340.
-
(2000)
Cell
, vol.101
, pp. 331-340
-
-
Nelson, D.C.1
-
64
-
-
0001357490
-
Control of circadian rhythms and photoperiodic flowering by the GIGANTEA gene
-
Park D.H., et al. Control of circadian rhythms and photoperiodic flowering by the GIGANTEA gene. Science 1999, 285:1579-1582.
-
(1999)
Science
, vol.285
, pp. 1579-1582
-
-
Park, D.H.1
-
65
-
-
0033198884
-
GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains
-
Fowler S., et al. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18:4679-4688.
-
(1999)
EMBO J.
, vol.18
, pp. 4679-4688
-
-
Fowler, S.1
-
66
-
-
22044444886
-
FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis
-
Imaizumi T., et al. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 2005, 309:293-297.
-
(2005)
Science
, vol.309
, pp. 293-297
-
-
Imaizumi, T.1
-
67
-
-
42449119813
-
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response
-
Jang S., et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 2008, 27:1277-1288.
-
(2008)
EMBO J.
, vol.27
, pp. 1277-1288
-
-
Jang, S.1
-
68
-
-
33748761912
-
Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability
-
Laubinger S., et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 2006, 133:3213-3222.
-
(2006)
Development
, vol.133
, pp. 3213-3222
-
-
Laubinger, S.1
-
69
-
-
42449112370
-
-
COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, tpc.107.057281
-
Liu, L.-J. et al. (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, tpc.107.057281.
-
(2008)
-
-
Liu, L.J.1
-
70
-
-
0034713297
-
Targeted destabilization of HY5 during light-regulated development of Arabidopsis
-
Osterlund M.T., et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000, 405:462-466.
-
(2000)
Nature
, vol.405
, pp. 462-466
-
-
Osterlund, M.T.1
-
71
-
-
0035543363
-
The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1
-
Yang H.Q., et al. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 2001, 13:2573-2587.
-
(2001)
Plant Cell
, vol.13
, pp. 2573-2587
-
-
Yang, H.Q.1
-
72
-
-
0035812725
-
Direct interaction of Arabidopsis cryptochromes with COP1 in light control development
-
Wang H.Y., et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 2001, 294:154-158.
-
(2001)
Science
, vol.294
, pp. 154-158
-
-
Wang, H.Y.1
-
73
-
-
70349559680
-
Just say no: floral repressors help Arabidopsis bide the time
-
Yant L., et al. Just say no: floral repressors help Arabidopsis bide the time. Curr. Opin. Plant Biol. 2009, 12:580-586.
-
(2009)
Curr. Opin. Plant Biol.
, vol.12
, pp. 580-586
-
-
Yant, L.1
-
74
-
-
50849142568
-
The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering
-
Castillejo C., Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr. Biol. 2008, 18:1338-1343.
-
(2008)
Curr. Biol.
, vol.18
, pp. 1338-1343
-
-
Castillejo, C.1
Pelaz, S.2
-
75
-
-
71449120958
-
Prediction of photoperiodic regulators from quantitative gene circuit models
-
Salazar J.D., et al. Prediction of photoperiodic regulators from quantitative gene circuit models. Cell 2009, 139:1170-1179.
-
(2009)
Cell
, vol.139
, pp. 1170-1179
-
-
Salazar, J.D.1
-
76
-
-
0035983622
-
Circadian rhythms confer a higher level of fitness to Arabidopsis plants
-
Green R.M., et al. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002, 129:576-584.
-
(2002)
Plant Physiol.
, vol.129
, pp. 576-584
-
-
Green, R.M.1
-
77
-
-
58249105076
-
Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids
-
Ni Z.F., et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457:327-1327.
-
(2009)
Nature
, vol.457
, pp. 327-1327
-
-
Ni, Z.F.1
-
78
-
-
33646720488
-
CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees
-
Bohlenius H., et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006, 312:1040-1043.
-
(2006)
Science
, vol.312
, pp. 1040-1043
-
-
Bohlenius, H.1
-
79
-
-
0035734275
-
A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2
-
El-Assal S.E.D., et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 2001, 29:435-440.
-
(2001)
Nat. Genet.
, vol.29
, pp. 435-440
-
-
El-Assal, S.E.D.1
-
80
-
-
77955610825
-
Diversity of flowering responses in wild Arabidopsis thaliana strains
-
Lempe J., et al. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLOS Genet. 2005, 1:109-118.
-
(2005)
PLOS Genet.
, vol.1
, pp. 109-118
-
-
Lempe, J.1
-
81
-
-
73249145459
-
Distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths
-
Giakountis A., et al. distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths. Plant Physiol. 2010, 152:177-191.
-
(2010)
Plant Physiol.
, vol.152
, pp. 177-191
-
-
Giakountis, A.1
-
82
-
-
33745247360
-
The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana
-
Balasubramanian S., et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat. Genet. 2006, 38:711-715.
-
(2006)
Nat. Genet.
, vol.38
, pp. 711-715
-
-
Balasubramanian, S.1
-
83
-
-
14044271573
-
Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation
-
Werner J.D., et al. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:2460-2465.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 2460-2465
-
-
Werner, J.D.1
-
84
-
-
70649114601
-
Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana
-
Schwartz C., et al. Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 2009, 183:723-732.
-
(2009)
Genetics
, vol.183
, pp. 723-732
-
-
Schwartz, C.1
-
85
-
-
33745469346
-
Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis
-
Darrah C., et al. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol. 2006, 140:1464-1474.
-
(2006)
Plant Physiol.
, vol.140
, pp. 1464-1474
-
-
Darrah, C.1
-
86
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
87
-
-
0037426839
-
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
-
Etchegaray J.P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
-
(2003)
Nature
, vol.421
, pp. 177-182
-
-
Etchegaray, J.P.1
-
88
-
-
33644617485
-
Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
-
Ripperger J.A., Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 2006, 38:369-374.
-
(2006)
Nat. Genet.
, vol.38
, pp. 369-374
-
-
Ripperger, J.A.1
Schibler, U.2
-
89
-
-
34548355182
-
A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock
-
Perales M., Mas P. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 2007, 19:2111-2123.
-
(2007)
Plant Cell
, vol.19
, pp. 2111-2123
-
-
Perales, M.1
Mas, P.2
-
90
-
-
70349655716
-
Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana
-
Tessadori F., et al. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLOS Genet. 2009, 5:e1000638.
-
(2009)
PLOS Genet.
, vol.5
-
-
Tessadori, F.1
-
91
-
-
0033213104
-
Natural allelic variation identifies new genes in the Arabidopsis circadian system
-
Swarup K., et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 1999, 20:67-77.
-
(1999)
Plant J.
, vol.20
, pp. 67-77
-
-
Swarup, K.1
-
92
-
-
33646510841
-
FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock
-
Edwards K.D., et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 2006, 18:639-650.
-
(2006)
Plant Cell
, vol.18
, pp. 639-650
-
-
Edwards, K.D.1
-
93
-
-
0242578405
-
Enhanced fitness conferred by naturally occurring variation in the circadian clock
-
Michael T.P., et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 2003, 302:1049-1053.
-
(2003)
Science
, vol.302
, pp. 1049-1053
-
-
Michael, T.P.1
-
94
-
-
62449114708
-
A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock
-
Pruneda-Paz J.L., et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 2009, 323:1481-1485.
-
(2009)
Science
, vol.323
, pp. 1481-1485
-
-
Pruneda-Paz, J.L.1
-
95
-
-
77952919484
-
PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock
-
Nakamichi N., et al. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 2010, 22:594-605.
-
(2010)
Plant Cell
, vol.22
, pp. 594-605
-
-
Nakamichi, N.1
-
96
-
-
77953198654
-
F-Box Proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression
-
Baudry A., et al. F-Box Proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 2010, 22:606-622.
-
(2010)
Plant Cell
, vol.22
, pp. 606-622
-
-
Baudry, A.1
-
97
-
-
34347374098
-
A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation
-
Ding Z.J., et al. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 2007, 176:1501-1510.
-
(2007)
Genetics
, vol.176
, pp. 1501-1510
-
-
Ding, Z.J.1
-
98
-
-
73249135405
-
Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings
-
Leivar P., et al. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 2009, 21:3535-3553.
-
(2009)
Plant Cell
, vol.21
, pp. 3535-3553
-
-
Leivar, P.1
-
99
-
-
66149118628
-
Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors
-
Shin J., et al. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:7660-7665.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 7660-7665
-
-
Shin, J.1
-
100
-
-
34250654847
-
DELLAs contribute to plant photomorphogenesis
-
Achard P., et al. DELLAs contribute to plant photomorphogenesis. Plant Physiol. 2007, 143:1163-1172.
-
(2007)
Plant Physiol.
, vol.143
, pp. 1163-1172
-
-
Achard, P.1
|