메뉴 건너뛰기




Volumn 26, Issue 7, 2010, Pages 296-306

Plant development goes like clockwork

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; CIRCADIAN RHYTHM; FLOWERING; GENETIC VARIABILITY; GERMINATION; NONHUMAN; PLANT DEVELOPMENT; PLANT GENETICS; PLANT GROWTH; PLANT LIFE CYCLE STAGE; PLANT STRESS; PRIORITY JOURNAL; REVIEW;

EID: 77953911604     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2010.04.003     Document Type: Review
Times cited : (159)

References (100)
  • 1
    • 51749110466 scopus 로고    scopus 로고
    • Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development
    • Covington M.F., et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9:R130.
    • (2008) Genome Biol. , vol.9
    • Covington, M.F.1
  • 2
    • 0037783233 scopus 로고    scopus 로고
    • Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis
    • Michael T.P., McClung C.R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol. 2003, 132:629-639.
    • (2003) Plant Physiol. , vol.132 , pp. 629-639
    • Michael, T.P.1    McClung, C.R.2
  • 3
    • 0034671791 scopus 로고    scopus 로고
    • Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
    • Harmer S.L., et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290:2110-2113.
    • (2000) Science , vol.290 , pp. 2110-2113
    • Harmer, S.L.1
  • 4
    • 62349089764 scopus 로고    scopus 로고
    • Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays
    • Hazen S.P., et al. Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. Genome Biol. 2009, 10:R17.
    • (2009) Genome Biol. , vol.10
    • Hazen, S.P.1
  • 6
    • 66449087281 scopus 로고    scopus 로고
    • The circadian system in higher plants
    • Harmer S.L. The circadian system in higher plants. Annu. Rev. Plant Biol. 2009, 60:357-377.
    • (2009) Annu. Rev. Plant Biol. , vol.60 , pp. 357-377
    • Harmer, S.L.1
  • 7
    • 70349546322 scopus 로고    scopus 로고
    • Time for circadian rhythms: plants get synchronized
    • Mas P., Yanovsky M.J. Time for circadian rhythms: plants get synchronized. Curr. Opin. Plant Biol. 2009, 12:574-579.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 574-579
    • Mas, P.1    Yanovsky, M.J.2
  • 8
    • 33845967084 scopus 로고    scopus 로고
    • Regulation of output from the plant circadian clock
    • Yakir E., et al. Regulation of output from the plant circadian clock. FEBS J. 2007, 274:335-345.
    • (2007) FEBS J. , vol.274 , pp. 335-345
    • Yakir, E.1
  • 9
    • 0031836977 scopus 로고    scopus 로고
    • Molecular intrigue between phototransduction and the circadian clock
    • Millar A.J. Molecular intrigue between phototransduction and the circadian clock. Ann. Bot. 1998, 81:581-587.
    • (1998) Ann. Bot. , vol.81 , pp. 581-587
    • Millar, A.J.1
  • 10
    • 0035179096 scopus 로고    scopus 로고
    • Molecular bases of circadian rhythms
    • Harmer S.L., et al. Molecular bases of circadian rhythms. Annu. Rev. Cell Dev. Biol. 2001, 17:215-253.
    • (2001) Annu. Rev. Cell Dev. Biol. , vol.17 , pp. 215-253
    • Harmer, S.L.1
  • 12
    • 70450173299 scopus 로고    scopus 로고
    • Weather and seasons together demand complex biological clocks
    • Troein C., et al. Weather and seasons together demand complex biological clocks. Curr. Biol. 2009, 19:1961-1964.
    • (2009) Curr. Biol. , vol.19 , pp. 1961-1964
    • Troein, C.1
  • 13
    • 0032555144 scopus 로고    scopus 로고
    • Resonating circadian clocks enhance fitness in cyanobacteria
    • Ouyang Y., et al. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:8660-8664.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 8660-8664
    • Ouyang, Y.1
  • 14
    • 0035044054 scopus 로고    scopus 로고
    • Endogenous timekeepers in photosynthetic organisms
    • Johnson C.H. Endogenous timekeepers in photosynthetic organisms. Annu. Rev. Physiol. 2001, 63:695-728.
    • (2001) Annu. Rev. Physiol. , vol.63 , pp. 695-728
    • Johnson, C.H.1
  • 15
    • 22744451756 scopus 로고    scopus 로고
    • Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage
    • Dodd A.N., et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309:630-633.
    • (2005) Science , vol.309 , pp. 630-633
    • Dodd, A.N.1
  • 16
    • 34447520296 scopus 로고    scopus 로고
    • Rhythmic growth explained by coincidence between internal and external cues
    • Nozue K., et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007, 448:358-361.
    • (2007) Nature , vol.448 , pp. 358-361
    • Nozue, K.1
  • 17
    • 0030465411 scopus 로고    scopus 로고
    • Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis
    • Millar A.J., Kay S.A. Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 1996, 93:15491-15496.
    • (1996) Proc. Natl. Acad. Sci. U. S. A. , vol.93 , pp. 15491-15496
    • Millar, A.J.1    Kay, S.A.2
  • 18
    • 70349243166 scopus 로고    scopus 로고
    • A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis
    • Penfield S., Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 2009, 21:1722-1732.
    • (2009) Plant Cell , vol.21 , pp. 1722-1732
    • Penfield, S.1    Hall, A.2
  • 19
    • 51549089224 scopus 로고    scopus 로고
    • Circadian timekeeping during early Arabidopsis development
    • Salome P.A., et al. Circadian timekeeping during early Arabidopsis development. Plant Physiol. 2008, 147:1110-1125.
    • (2008) Plant Physiol. , vol.147 , pp. 1110-1125
    • Salome, P.A.1
  • 20
    • 0032303006 scopus 로고    scopus 로고
    • Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings
    • Zhong H.H., et al. Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell 1998, 10:2005-2017.
    • (1998) Plant Cell , vol.10 , pp. 2005-2017
    • Zhong, H.H.1
  • 21
    • 33644814040 scopus 로고    scopus 로고
    • ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY
    • Kikis E.A., et al. ELF4 is a phytochrome-regulated component of a negative feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 2005, 44:300-313.
    • (2005) Plant J. , vol.44 , pp. 300-313
    • Kikis, E.A.1
  • 22
    • 33751239436 scopus 로고    scopus 로고
    • Multiple phytohormones influence distinct parameters of the plant circadian clock
    • Hanano S., et al. Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells 2006, 11:1381-1392.
    • (2006) Genes Cells , vol.11 , pp. 1381-1392
    • Hanano, S.1
  • 23
    • 34548206704 scopus 로고    scopus 로고
    • The circadian clock regulates auxin signaling and responses in Arabidopsis
    • Covington M.F., Harmer S.L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLOS Biol. 2007, 5:1773-1784.
    • (2007) PLOS Biol. , vol.5 , pp. 1773-1784
    • Covington, M.F.1    Harmer, S.L.2
  • 24
    • 37249077411 scopus 로고    scopus 로고
    • The Arabidopsis circadian clock incorporates a cADPR-based feedback loop
    • Dodd A.N., et al. The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 2007, 318:1789-1792.
    • (2007) Science , vol.318 , pp. 1789-1792
    • Dodd, A.N.1
  • 25
    • 40849124054 scopus 로고    scopus 로고
    • Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants
    • Mizuno T., Yamashino T. Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol. 2008, 49:481-487.
    • (2008) Plant Cell Physiol. , vol.49 , pp. 481-487
    • Mizuno, T.1    Yamashino, T.2
  • 26
    • 71449108624 scopus 로고    scopus 로고
    • TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought
    • Legnaioli T., et al. TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 2009, 28:3745-3757.
    • (2009) EMBO J. , vol.28 , pp. 3745-3757
    • Legnaioli, T.1
  • 27
    • 0034095041 scopus 로고    scopus 로고
    • Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds
    • Kurup S., et al. Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 2000, 21:143-155.
    • (2000) Plant J. , vol.21 , pp. 143-155
    • Kurup, S.1
  • 28
    • 77953911521 scopus 로고    scopus 로고
    • A functional connection between the clock component TOC1 and abscisic acid signaling pathways
    • Castells E., et al. A functional connection between the clock component TOC1 and abscisic acid signaling pathways. Plant Signal. Behav. 2010, 5:409-411.
    • (2010) Plant Signal. Behav. , vol.5 , pp. 409-411
    • Castells, E.1
  • 29
    • 15944412159 scopus 로고    scopus 로고
    • Of light and length: regulation of hypocotyl growth in Arabidopsis
    • Vandenbussche F., et al. Of light and length: regulation of hypocotyl growth in Arabidopsis. Bioessays 2005, 27:275-284.
    • (2005) Bioessays , vol.27 , pp. 275-284
    • Vandenbussche, F.1
  • 30
    • 0346258011 scopus 로고    scopus 로고
    • Gating of the rapid shade-avoidance response by the circadian clock in plants
    • Salter M.G., et al. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 2003, 426:680-683.
    • (2003) Nature , vol.426 , pp. 680-683
    • Salter, M.G.1
  • 31
    • 54749087162 scopus 로고    scopus 로고
    • A morning-specific phytohormone gene expression program underlying rhythmic plant growth
    • Michael T.P., et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLOS Biol. 2008, 6:e225.
    • (2008) PLOS Biol. , vol.6
    • Michael, T.P.1
  • 32
    • 13744263437 scopus 로고    scopus 로고
    • BHLH class transcription factors take centre stage in phytochrome signalling
    • Duek P.D., Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci. 2005, 10:51-54.
    • (2005) Trends Plant Sci. , vol.10 , pp. 51-54
    • Duek, P.D.1    Fankhauser, C.2
  • 33
    • 38549167870 scopus 로고    scopus 로고
    • A molecular framework for light and gibberellin control of cell elongation
    • de Lucas M., et al. A molecular framework for light and gibberellin control of cell elongation. Nature 2008, 451:480-484.
    • (2008) Nature , vol.451 , pp. 480-484
    • de Lucas, M.1
  • 34
    • 38549142539 scopus 로고    scopus 로고
    • Coordinated regulation of Arabidopsis thaliana development by light and gibberellins
    • Feng S., et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 2008, 451:475-479.
    • (2008) Nature , vol.451 , pp. 475-479
    • Feng, S.1
  • 35
    • 70349741081 scopus 로고    scopus 로고
    • REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways
    • Rawat R., et al. REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:16883-16888.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 16883-16888
    • Rawat, R.1
  • 36
    • 55949116196 scopus 로고    scopus 로고
    • A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana
    • Loudet O., et al. A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:17193-17198.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 17193-17198
    • Loudet, O.1
  • 37
    • 0035047711 scopus 로고    scopus 로고
    • Genetic and molecular analysis of circadian rhythms in Neurospora
    • Loros J.J., Dunlap J.C. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol. 2001, 63:757-794.
    • (2001) Annu. Rev. Physiol. , vol.63 , pp. 757-794
    • Loros, J.J.1    Dunlap, J.C.2
  • 38
    • 33745453173 scopus 로고    scopus 로고
    • The molecular basis of temperature compensation in the Arabidopsis circadian clock
    • Gould P.D., et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 2006, 18:1177-1187.
    • (2006) Plant Cell , vol.18 , pp. 1177-1187
    • Gould, P.D.1
  • 39
    • 50649124284 scopus 로고    scopus 로고
    • Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome
    • Bieniawska Z., et al. Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol. 2008, 147:263-279.
    • (2008) Plant Physiol. , vol.147 , pp. 263-279
    • Bieniawska, Z.1
  • 40
    • 18744413036 scopus 로고    scopus 로고
    • Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock
    • Fowler S.G., et al. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 2005, 137:961-968.
    • (2005) Plant Physiol. , vol.137 , pp. 961-968
    • Fowler, S.G.1
  • 41
    • 2942733588 scopus 로고    scopus 로고
    • Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems
    • Maruyama K., et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 2004, 38:982-993.
    • (2004) Plant J. , vol.38 , pp. 982-993
    • Maruyama, K.1
  • 42
    • 71049138076 scopus 로고    scopus 로고
    • The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis
    • Kidokoro S., et al. The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 2009, 151:2046-2057.
    • (2009) Plant Physiol. , vol.151 , pp. 2046-2057
    • Kidokoro, S.1
  • 43
    • 70349852402 scopus 로고    scopus 로고
    • A role for circadian evening elements in cold-regulated gene expression in Arabidopsis
    • Mikkelsen M.D., Thomashow M.F. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009, 60:328-339.
    • (2009) Plant J. , vol.60 , pp. 328-339
    • Mikkelsen, M.D.1    Thomashow, M.F.2
  • 44
    • 28244451860 scopus 로고    scopus 로고
    • Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis
    • Cao S., et al. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 2005, 24:683-690.
    • (2005) Plant Cell Rep. , vol.24 , pp. 683-690
    • Cao, S.1
  • 45
    • 63049122216 scopus 로고    scopus 로고
    • Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response
    • Nakamichi N., et al. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 2009, 50:447-462.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 447-462
    • Nakamichi, N.1
  • 46
    • 66349124175 scopus 로고    scopus 로고
    • Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination
    • Fukushima A., et al. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:7251-7256.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 7251-7256
    • Fukushima, A.1
  • 47
    • 33644813858 scopus 로고    scopus 로고
    • Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis
    • Harmer S.L., Kay S.A. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 2005, 17:1926-1940.
    • (2005) Plant Cell , vol.17 , pp. 1926-1940
    • Harmer, S.L.1    Kay, S.A.2
  • 48
    • 0035800467 scopus 로고    scopus 로고
    • Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock
    • Alabadi D., et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 2001, 293:880-883.
    • (2001) Science , vol.293 , pp. 880-883
    • Alabadi, D.1
  • 49
    • 53249084807 scopus 로고    scopus 로고
    • The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors
    • Gong W., et al. The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol. Plant 2008, 1:27-41.
    • (2008) Mol. Plant , vol.1 , pp. 27-41
    • Gong, W.1
  • 50
    • 34547105040 scopus 로고    scopus 로고
    • Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis
    • Zhang X., et al. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in Arabidopsis. Plant J. 2007, 51:512-525.
    • (2007) Plant J. , vol.51 , pp. 512-525
    • Zhang, X.1
  • 51
    • 0142060793 scopus 로고    scopus 로고
    • The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis
    • Kuno N., et al. The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis. Plant Cell 2003, 15:2476-2488.
    • (2003) Plant Cell , vol.15 , pp. 2476-2488
    • Kuno, N.1
  • 52
    • 35949004478 scopus 로고    scopus 로고
    • Mechanical stress induces biotic and abiotic stress responses via a novel cis-element
    • Walley J.W., et al. Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLOS Genet. 2007, 3:1800-1812.
    • (2007) PLOS Genet. , vol.3 , pp. 1800-1812
    • Walley, J.W.1
  • 53
    • 0032103771 scopus 로고    scopus 로고
    • Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat
    • Kurepa J., et al. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J. 1998, 14:759-764.
    • (1998) Plant J. , vol.14 , pp. 759-764
    • Kurepa, J.1
  • 54
    • 33645461970 scopus 로고    scopus 로고
    • The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis
    • Cao S., et al. The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul. 2006, 48:261-270.
    • (2006) Plant Growth Regul. , vol.48 , pp. 261-270
    • Cao, S.1
  • 55
    • 43449118706 scopus 로고    scopus 로고
    • Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses
    • Kant P., et al. Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses. Plant Cell Environ. 2008, 31:697-714.
    • (2008) Plant Cell Environ. , vol.31 , pp. 697-714
    • Kant, P.1
  • 56
    • 44949113265 scopus 로고    scopus 로고
    • Regulation and identity of florigen: FLOWERING LOCUS T moves center stage
    • Turck F., et al. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 2008, 59:573-594.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 573-594
    • Turck, F.1
  • 57
    • 34948866143 scopus 로고    scopus 로고
    • Move on up, it's time for change - mobile signals controlling photoperiod-dependent flowering
    • Kobayashi Y., Weigel D. Move on up, it's time for change - mobile signals controlling photoperiod-dependent flowering. Gene Dev. 2007, 21:2371-2384.
    • (2007) Gene Dev. , vol.21 , pp. 2371-2384
    • Kobayashi, Y.1    Weigel, D.2
  • 58
    • 0035953691 scopus 로고    scopus 로고
    • CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis
    • Suarez-Lopez P., et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410:1116-1120.
    • (2001) Nature , vol.410 , pp. 1116-1120
    • Suarez-Lopez, P.1
  • 59
    • 1142286356 scopus 로고    scopus 로고
    • Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering
    • Valverde F., et al. Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic flowering. Science 2004, 303:1003-1006.
    • (2004) Science , vol.303 , pp. 1003-1006
    • Valverde, F.1
  • 60
    • 0344443180 scopus 로고    scopus 로고
    • FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis
    • Imaizumi T., et al. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 2003, 426:302-306.
    • (2003) Nature , vol.426 , pp. 302-306
    • Imaizumi, T.1
  • 61
    • 67650473072 scopus 로고    scopus 로고
    • Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response
    • Fornara F., et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev. Cell 2009, 17:75-86.
    • (2009) Dev. Cell , vol.17 , pp. 75-86
    • Fornara, F.1
  • 62
    • 35348910170 scopus 로고    scopus 로고
    • FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis
    • Sawa M., et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 2007, 318:261-265.
    • (2007) Science , vol.318 , pp. 261-265
    • Sawa, M.1
  • 63
    • 0034724516 scopus 로고    scopus 로고
    • FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis
    • Nelson D.C., et al. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 2000, 101:331-340.
    • (2000) Cell , vol.101 , pp. 331-340
    • Nelson, D.C.1
  • 64
    • 0001357490 scopus 로고    scopus 로고
    • Control of circadian rhythms and photoperiodic flowering by the GIGANTEA gene
    • Park D.H., et al. Control of circadian rhythms and photoperiodic flowering by the GIGANTEA gene. Science 1999, 285:1579-1582.
    • (1999) Science , vol.285 , pp. 1579-1582
    • Park, D.H.1
  • 65
    • 0033198884 scopus 로고    scopus 로고
    • GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains
    • Fowler S., et al. GIGANTEA: A circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 1999, 18:4679-4688.
    • (1999) EMBO J. , vol.18 , pp. 4679-4688
    • Fowler, S.1
  • 66
    • 22044444886 scopus 로고    scopus 로고
    • FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis
    • Imaizumi T., et al. FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 2005, 309:293-297.
    • (2005) Science , vol.309 , pp. 293-297
    • Imaizumi, T.1
  • 67
    • 42449119813 scopus 로고    scopus 로고
    • Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response
    • Jang S., et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 2008, 27:1277-1288.
    • (2008) EMBO J. , vol.27 , pp. 1277-1288
    • Jang, S.1
  • 68
    • 33748761912 scopus 로고    scopus 로고
    • Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability
    • Laubinger S., et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 2006, 133:3213-3222.
    • (2006) Development , vol.133 , pp. 3213-3222
    • Laubinger, S.1
  • 69
    • 42449112370 scopus 로고    scopus 로고
    • COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, tpc.107.057281
    • Liu, L.-J. et al. (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, tpc.107.057281.
    • (2008)
    • Liu, L.J.1
  • 70
    • 0034713297 scopus 로고    scopus 로고
    • Targeted destabilization of HY5 during light-regulated development of Arabidopsis
    • Osterlund M.T., et al. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 2000, 405:462-466.
    • (2000) Nature , vol.405 , pp. 462-466
    • Osterlund, M.T.1
  • 71
    • 0035543363 scopus 로고    scopus 로고
    • The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1
    • Yang H.Q., et al. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 2001, 13:2573-2587.
    • (2001) Plant Cell , vol.13 , pp. 2573-2587
    • Yang, H.Q.1
  • 72
    • 0035812725 scopus 로고    scopus 로고
    • Direct interaction of Arabidopsis cryptochromes with COP1 in light control development
    • Wang H.Y., et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 2001, 294:154-158.
    • (2001) Science , vol.294 , pp. 154-158
    • Wang, H.Y.1
  • 73
    • 70349559680 scopus 로고    scopus 로고
    • Just say no: floral repressors help Arabidopsis bide the time
    • Yant L., et al. Just say no: floral repressors help Arabidopsis bide the time. Curr. Opin. Plant Biol. 2009, 12:580-586.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 580-586
    • Yant, L.1
  • 74
    • 50849142568 scopus 로고    scopus 로고
    • The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering
    • Castillejo C., Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr. Biol. 2008, 18:1338-1343.
    • (2008) Curr. Biol. , vol.18 , pp. 1338-1343
    • Castillejo, C.1    Pelaz, S.2
  • 75
    • 71449120958 scopus 로고    scopus 로고
    • Prediction of photoperiodic regulators from quantitative gene circuit models
    • Salazar J.D., et al. Prediction of photoperiodic regulators from quantitative gene circuit models. Cell 2009, 139:1170-1179.
    • (2009) Cell , vol.139 , pp. 1170-1179
    • Salazar, J.D.1
  • 76
    • 0035983622 scopus 로고    scopus 로고
    • Circadian rhythms confer a higher level of fitness to Arabidopsis plants
    • Green R.M., et al. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 2002, 129:576-584.
    • (2002) Plant Physiol. , vol.129 , pp. 576-584
    • Green, R.M.1
  • 77
    • 58249105076 scopus 로고    scopus 로고
    • Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids
    • Ni Z.F., et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457:327-1327.
    • (2009) Nature , vol.457 , pp. 327-1327
    • Ni, Z.F.1
  • 78
    • 33646720488 scopus 로고    scopus 로고
    • CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees
    • Bohlenius H., et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006, 312:1040-1043.
    • (2006) Science , vol.312 , pp. 1040-1043
    • Bohlenius, H.1
  • 79
    • 0035734275 scopus 로고    scopus 로고
    • A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2
    • El-Assal S.E.D., et al. A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat. Genet. 2001, 29:435-440.
    • (2001) Nat. Genet. , vol.29 , pp. 435-440
    • El-Assal, S.E.D.1
  • 80
    • 77955610825 scopus 로고    scopus 로고
    • Diversity of flowering responses in wild Arabidopsis thaliana strains
    • Lempe J., et al. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLOS Genet. 2005, 1:109-118.
    • (2005) PLOS Genet. , vol.1 , pp. 109-118
    • Lempe, J.1
  • 81
    • 73249145459 scopus 로고    scopus 로고
    • Distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths
    • Giakountis A., et al. distinct patterns of genetic variation alter flowering responses of Arabidopsis accessions to different daylengths. Plant Physiol. 2010, 152:177-191.
    • (2010) Plant Physiol. , vol.152 , pp. 177-191
    • Giakountis, A.1
  • 82
    • 33745247360 scopus 로고    scopus 로고
    • The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana
    • Balasubramanian S., et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat. Genet. 2006, 38:711-715.
    • (2006) Nat. Genet. , vol.38 , pp. 711-715
    • Balasubramanian, S.1
  • 83
    • 14044271573 scopus 로고    scopus 로고
    • Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation
    • Werner J.D., et al. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc. Natl. Acad. Sci. U. S. A. 2005, 102:2460-2465.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 2460-2465
    • Werner, J.D.1
  • 84
    • 70649114601 scopus 로고    scopus 로고
    • Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana
    • Schwartz C., et al. Cis-regulatory changes at FLOWERING LOCUS T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 2009, 183:723-732.
    • (2009) Genetics , vol.183 , pp. 723-732
    • Schwartz, C.1
  • 85
    • 33745469346 scopus 로고    scopus 로고
    • Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis
    • Darrah C., et al. Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis. Plant Physiol. 2006, 140:1464-1474.
    • (2006) Plant Physiol. , vol.140 , pp. 1464-1474
    • Darrah, C.1
  • 86
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda S., et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109:307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1
  • 87
    • 0037426839 scopus 로고    scopus 로고
    • Rhythmic histone acetylation underlies transcription in the mammalian circadian clock
    • Etchegaray J.P., et al. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 2003, 421:177-182.
    • (2003) Nature , vol.421 , pp. 177-182
    • Etchegaray, J.P.1
  • 88
    • 33644617485 scopus 로고    scopus 로고
    • Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions
    • Ripperger J.A., Schibler U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 2006, 38:369-374.
    • (2006) Nat. Genet. , vol.38 , pp. 369-374
    • Ripperger, J.A.1    Schibler, U.2
  • 89
    • 34548355182 scopus 로고    scopus 로고
    • A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock
    • Perales M., Mas P. A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 2007, 19:2111-2123.
    • (2007) Plant Cell , vol.19 , pp. 2111-2123
    • Perales, M.1    Mas, P.2
  • 90
    • 70349655716 scopus 로고    scopus 로고
    • Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana
    • Tessadori F., et al. Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLOS Genet. 2009, 5:e1000638.
    • (2009) PLOS Genet. , vol.5
    • Tessadori, F.1
  • 91
    • 0033213104 scopus 로고    scopus 로고
    • Natural allelic variation identifies new genes in the Arabidopsis circadian system
    • Swarup K., et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 1999, 20:67-77.
    • (1999) Plant J. , vol.20 , pp. 67-77
    • Swarup, K.1
  • 92
    • 33646510841 scopus 로고    scopus 로고
    • FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock
    • Edwards K.D., et al. FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 2006, 18:639-650.
    • (2006) Plant Cell , vol.18 , pp. 639-650
    • Edwards, K.D.1
  • 93
    • 0242578405 scopus 로고    scopus 로고
    • Enhanced fitness conferred by naturally occurring variation in the circadian clock
    • Michael T.P., et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 2003, 302:1049-1053.
    • (2003) Science , vol.302 , pp. 1049-1053
    • Michael, T.P.1
  • 94
    • 62449114708 scopus 로고    scopus 로고
    • A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock
    • Pruneda-Paz J.L., et al. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 2009, 323:1481-1485.
    • (2009) Science , vol.323 , pp. 1481-1485
    • Pruneda-Paz, J.L.1
  • 95
    • 77952919484 scopus 로고    scopus 로고
    • PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock
    • Nakamichi N., et al. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 2010, 22:594-605.
    • (2010) Plant Cell , vol.22 , pp. 594-605
    • Nakamichi, N.1
  • 96
    • 77953198654 scopus 로고    scopus 로고
    • F-Box Proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression
    • Baudry A., et al. F-Box Proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 2010, 22:606-622.
    • (2010) Plant Cell , vol.22 , pp. 606-622
    • Baudry, A.1
  • 97
    • 34347374098 scopus 로고    scopus 로고
    • A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation
    • Ding Z.J., et al. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 2007, 176:1501-1510.
    • (2007) Genetics , vol.176 , pp. 1501-1510
    • Ding, Z.J.1
  • 98
    • 73249135405 scopus 로고    scopus 로고
    • Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings
    • Leivar P., et al. Definition of early transcriptional circuitry involved in light-induced reversal of PIF-imposed repression of photomorphogenesis in young Arabidopsis seedlings. Plant Cell 2009, 21:3535-3553.
    • (2009) Plant Cell , vol.21 , pp. 3535-3553
    • Leivar, P.1
  • 99
    • 66149118628 scopus 로고    scopus 로고
    • Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors
    • Shin J., et al. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:7660-7665.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 7660-7665
    • Shin, J.1
  • 100
    • 34250654847 scopus 로고    scopus 로고
    • DELLAs contribute to plant photomorphogenesis
    • Achard P., et al. DELLAs contribute to plant photomorphogenesis. Plant Physiol. 2007, 143:1163-1172.
    • (2007) Plant Physiol. , vol.143 , pp. 1163-1172
    • Achard, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.