메뉴 건너뛰기




Volumn 24, Issue 3, 2013, Pages 356-369

Model-based online learning with kernels

Author keywords

Classification; Kernels; Novelty detection; Online learning; Regression; Reproducing kernel hilbert space

Indexed keywords

KERNELS; NOVELTY DETECTION; ONLINE LEARNING; REGRESSION; REPRODUCING KERNEL HILBERT SPACES;

EID: 84879125836     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2229293     Document Type: Article
Times cited : (52)

References (34)
  • 2
    • 79954460407 scopus 로고    scopus 로고
    • Identification of a class of nonlinear autoregressive with exogenous inputs models based on Kernel machines
    • May
    • G. Li, C. Wen, W. Zheng, and Y. Chen, "Identification of a class of nonlinear autoregressive with exogenous inputs models based on Kernel machines," IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2146-2158, May 2011.
    • (2011) IEEE Trans. Signal Process. , vol.59 , Issue.5 , pp. 2146-2158
    • Li, G.1    Wen, C.2    Zheng, W.3    Chen, Y.4
  • 3
    • 84876921784 scopus 로고    scopus 로고
    • Multiclass feature selection with Kernel gram-matrix-based criteria
    • Oct.
    • M. Ramona, G. Richard, and B. David, "Multiclass feature selection with Kernel gram-matrix-based criteria," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1611-1623, Oct. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1611-1623
    • Ramona, M.1    Richard, G.2    David, B.3
  • 5
    • 0034323731 scopus 로고    scopus 로고
    • Support vector machine techniques for nonlinear equalization
    • Nov.
    • D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000.
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.11 , pp. 3217-3226
    • Sebald, D.J.1    Bucklew, J.A.2
  • 6
    • 78149357397 scopus 로고    scopus 로고
    • Semisupervised Kernel matrix learning by Kernel propagation
    • Nov.
    • E. Hu, S. Chen, D. Zhang, and X. Yin, "Semisupervised Kernel matrix learning by Kernel propagation," IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1831-1841, Nov. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.11 , pp. 1831-1841
    • Hu, E.1    Chen, S.2    Zhang, D.3    Yin, X.4
  • 7
    • 80052408376 scopus 로고    scopus 로고
    • Online identification of nonlinear spatiotemporal systems using Kernel learning approach
    • Sep.
    • H. Ning, X. Jing, and L. Cheng, "Online identification of nonlinear spatiotemporal systems using Kernel learning approach," IEEE Trans. Neural Netw., vol. 22, no. 9, pp. 1381-1394, Sep. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.9 , pp. 1381-1394
    • Ning, H.1    Jing, X.2    Cheng, L.3
  • 8
    • 84862605112 scopus 로고    scopus 로고
    • Identification of Wiener systems with clipped observations
    • Jul.
    • G. Li and C. Wen, "Identification of Wiener systems with clipped observations," IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3845-3852, Jul. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.7 , pp. 3845-3852
    • Li, G.1    Wen, C.2
  • 9
    • 84875886116 scopus 로고    scopus 로고
    • Efficient online subspace learning with an indefinite Kernel for visual tracking and recognition
    • Oct.
    • S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, "Efficient online subspace learning with an indefinite Kernel for visual tracking and recognition," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1624-1636, Oct. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.10 , pp. 1624-1636
    • Liwicki, S.1    Zafeiriou, S.2    Tzimiropoulos, G.3    Pantic, M.4
  • 10
    • 0025449027 scopus 로고
    • Perceptron-based learning algorithms
    • Feb.
    • S. I. Gallant, "Perceptron-based learning algorithms," IEEE Trans. Neural Netw., vol. 1, no. 2, pp. 179-191, Feb. 1990.
    • (1990) IEEE Trans. Neural Netw. , vol.1 , Issue.2 , pp. 179-191
    • Gallant, S.I.1
  • 11
    • 80455176946 scopus 로고    scopus 로고
    • Direct parallel perceptrons (DPPs): Fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks
    • Nov.
    • M. Fernandez-Delgado, J. Ribeiro, E. Cernadas, and S. B. Ameneiro, "Direct parallel perceptrons (DPPs): Fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks," IEEE Trans. Neural Netw., vol. 22, no. 11, pp. 1837-1848, Nov. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.11 , pp. 1837-1848
    • Fernandez-Delgado, M.1    Ribeiro, J.2    Cernadas, E.3    Ameneiro, S.B.4
  • 12
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Y. Freund and R. E. Schapire, "Large margin classification using the perceptron algorithm," Mach. Learn., vol. 37, no. 3, pp. 277-296, 1999. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 13
    • 55249109544 scopus 로고    scopus 로고
    • The forgetron: A Kernel-based Perceptron on a budget
    • O. Dekel, S. S. Shwartz, and Y. Singer, "The forgetron: A Kernel-based Perceptron on a budget," SIAM J. Comput., vol. 37, no. 5, pp. 1342-1372, 2008.
    • (2008) SIAM J. Comput. , vol.37 , Issue.5 , pp. 1342-1372
    • Dekel, O.1    Shwartz, S.S.2    Singer, Y.3
  • 14
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Jan.
    • J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res., vol. 12, pp. 2121-2159, Jan. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 15
    • 3543096272 scopus 로고    scopus 로고
    • The Kernel recursive least squares algorithm
    • Aug.
    • Y. Engel, S. Mannor, and R. Meir, "The Kernel recursive least squares algorithm," IEEE Trans. Sig. Process., vol. 52, no. 8, pp. 2275-2185, Aug. 2004.
    • (2004) IEEE Trans. Sig. Process. , vol.52 , Issue.8 , pp. 2275-12185
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 16
    • 70349251856 scopus 로고    scopus 로고
    • Limited stochastic meta-descent for Kernel-based online learning
    • W. He, "Limited stochastic meta-descent for Kernel-based online learning," Neural Comput., vol. 21, no. 9, pp. 2667-2686, 2009.
    • (2009) Neural Comput. , vol.21 , Issue.9 , pp. 2667-2686
    • He, W.1
  • 17
    • 73549088063 scopus 로고    scopus 로고
    • Bounded Kernel-based online learning
    • Nov.
    • F. Orabona, J. Keshet, and B. Caputo, "Bounded Kernel-based online learning," J. Mach. Learn. Res., vol. 10, pp. 2643-2666, Nov. 2009.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2643-2666
    • Orabona, F.1    Keshet, J.2    Caputo, B.3
  • 18
    • 84865223593 scopus 로고    scopus 로고
    • Adaptive learning in complex reproducing Kernel Hilbert spaces employing Wirtinger's subgradients
    • Mar.
    • P. Bouboulis, K. Slavakis, and S. Theodoridis, "Adaptive learning in complex reproducing Kernel Hilbert spaces employing Wirtinger's subgradients," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 425-438, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.3 , pp. 425-438
    • Bouboulis, P.1    Slavakis, K.2    Theodoridis, S.3
  • 19
    • 33646950083 scopus 로고    scopus 로고
    • An online support vector machine for abnormal events detection
    • DOI 10.1016/j.sigpro.2005.09.027, PII S0165168405003555
    • M. Davy, F. Desobry, A. Gretton, and C. Doncarli, "An online support vector machine for abnormal events detection," Sig. Process., vol. 86, pp. 2009-2025, Sep. 2006. (Pubitemid 43795456)
    • (2006) Signal Processing , vol.86 , Issue.8 , pp. 2009-2025
    • Davy, M.1    Desobry, F.2    Gretton, A.3    Doncarli, C.4
  • 20
    • 33646032356 scopus 로고    scopus 로고
    • The p-norm generalization of the LMS algorithm for adaptive filtering
    • May
    • J. Kivinen, M. K. Warmuth, and B. Hassibi, "The p-norm generalization of the LMS algorithm for adaptive filtering," IEEE Trans. Sig. Process., vol. 54, no. 5, pp. 1782-1793, May 2006.
    • (2006) IEEE Trans. Sig. Process. , vol.54 , Issue.5 , pp. 1782-1793
    • Kivinen, J.1    Warmuth, M.K.2    Hassibi, B.3
  • 21
    • 79955364171 scopus 로고    scopus 로고
    • Real-time discriminative background subtraction
    • Oct.
    • L. Cheng, M. Gong, D. Schuurmans, and T. Caelli, "Real-time discriminative background subtraction," IEEE Trans. Image Process., vol. 20, no. 10, pp. 1401-1414, Oct. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.10 , pp. 1401-1414
    • Cheng, L.1    Gong, M.2    Schuurmans, D.3    Caelli, T.4
  • 23
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Cambridge MA: MIT Press
    • J. C. Platt, "Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Machines. Cambridge MA: MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Platt, J.C.1
  • 24
    • 77953101472 scopus 로고    scopus 로고
    • Inference from aging information
    • Jun.
    • E. A. D. Oliveira and N. Caticha, "Inference from aging information," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 1015-1020, Jun. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.6 , pp. 1015-1020
    • Oliveira, E.A.D.1    Caticha, N.2
  • 25
    • 78751569728 scopus 로고    scopus 로고
    • Adaptive learning of multi-subspace for foreground detection under illuminiation changes
    • Y. Dong and G. N. DeSouza, "Adaptive learning of multi-subspace for foreground detection under illuminiation changes," Comput. Vis. Image Understan., vol. 115, no. 1, pp. 31-39, 2011.
    • (2011) Comput. Vis. Image Understan. , vol.115 , Issue.1 , pp. 31-39
    • Dong, Y.1    DeSouza, G.N.2
  • 26
    • 18144431335 scopus 로고    scopus 로고
    • Mercer theorem for RKHS on noncompact sets
    • DOI 10.1016/j.jco.2004.09.002, PII S0885064X04000822
    • H. Sun, "Mercer theorem for RKHS on noncompact sets," J. Complex., vol. 21, no. 3, pp. 337-349, 2005. (Pubitemid 40608774)
    • (2005) Journal of Complexity , vol.21 , Issue.3 , pp. 337-349
    • Sun, H.1
  • 27
    • 0032821057 scopus 로고    scopus 로고
    • RKHS-based functional analysis for exact incremental learning
    • DOI 10.1016/S0925-2312(99)00112-5, PII S0925231299001125
    • S. Vijayakumar and H. Ogawa, "RKHS-based functional analysis for exact incremental learning," Neurocompting, vol. 29, pp. 85-113, Oct. 1999. (Pubitemid 29440947)
    • (1999) Neurocomputing , vol.29 , Issue.1-3 , pp. 85-113
    • Vijayakumar, S.1    Ogawa, H.2
  • 31
    • 78650751806 scopus 로고    scopus 로고
    • Error tolerance based support vector machine for regression
    • G. Li, C. Wen, G. B. Huang, and Y. Chen, "Error tolerance based support vector machine for regression," Neurocompting, vol. 74, no. 5, pp. 771-782, 2011.
    • (2011) Neurocompting , vol.74 , Issue.5 , pp. 771-782
    • Li, G.1    Wen, C.2    Huang, G.B.3    Chen, Y.4
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 34
    • 0344551957 scopus 로고    scopus 로고
    • Segmenting foreground objects from a dynamic textured background via a robust Kalman filter
    • J. Zhong and S. Sclaroff, "Segmenting foreground objects from a dynamic textured background via a robust Kalman filter," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2003, pp. 44-50.
    • Proc. IEEE Int. Conf. Comput. Vis., Oct. 2003 , pp. 44-50
    • Zhong, J.1    Sclaroff, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.