-
1
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Schölkopf and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
2
-
-
79954460407
-
Identification of a class of nonlinear autoregressive with exogenous inputs models based on Kernel machines
-
May
-
G. Li, C. Wen, W. Zheng, and Y. Chen, "Identification of a class of nonlinear autoregressive with exogenous inputs models based on Kernel machines," IEEE Trans. Signal Process., vol. 59, no. 5, pp. 2146-2158, May 2011.
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, Issue.5
, pp. 2146-2158
-
-
Li, G.1
Wen, C.2
Zheng, W.3
Chen, Y.4
-
3
-
-
84876921784
-
Multiclass feature selection with Kernel gram-matrix-based criteria
-
Oct.
-
M. Ramona, G. Richard, and B. David, "Multiclass feature selection with Kernel gram-matrix-based criteria," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1611-1623, Oct. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.10
, pp. 1611-1623
-
-
Ramona, M.1
Richard, G.2
David, B.3
-
4
-
-
3543110224
-
Online learning with Kernels
-
Oct.
-
J. Kivinen, A. Smola, and R. Williamson, "Online learning with Kernels," IEEE Trans. Signal Process., vol. 100, no. 10, pp. 2165-2176, Oct. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.100
, Issue.10
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.2
Williamson, R.3
-
5
-
-
0034323731
-
Support vector machine techniques for nonlinear equalization
-
Nov.
-
D. J. Sebald and J. A. Bucklew, "Support vector machine techniques for nonlinear equalization," IEEE Trans. Signal Process., vol. 48, no. 11, pp. 3217-3226, Nov. 2000.
-
(2000)
IEEE Trans. Signal Process.
, vol.48
, Issue.11
, pp. 3217-3226
-
-
Sebald, D.J.1
Bucklew, J.A.2
-
6
-
-
78149357397
-
Semisupervised Kernel matrix learning by Kernel propagation
-
Nov.
-
E. Hu, S. Chen, D. Zhang, and X. Yin, "Semisupervised Kernel matrix learning by Kernel propagation," IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1831-1841, Nov. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.11
, pp. 1831-1841
-
-
Hu, E.1
Chen, S.2
Zhang, D.3
Yin, X.4
-
7
-
-
80052408376
-
Online identification of nonlinear spatiotemporal systems using Kernel learning approach
-
Sep.
-
H. Ning, X. Jing, and L. Cheng, "Online identification of nonlinear spatiotemporal systems using Kernel learning approach," IEEE Trans. Neural Netw., vol. 22, no. 9, pp. 1381-1394, Sep. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.9
, pp. 1381-1394
-
-
Ning, H.1
Jing, X.2
Cheng, L.3
-
8
-
-
84862605112
-
Identification of Wiener systems with clipped observations
-
Jul.
-
G. Li and C. Wen, "Identification of Wiener systems with clipped observations," IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3845-3852, Jul. 2012.
-
(2012)
IEEE Trans. Signal Process.
, vol.60
, Issue.7
, pp. 3845-3852
-
-
Li, G.1
Wen, C.2
-
9
-
-
84875886116
-
Efficient online subspace learning with an indefinite Kernel for visual tracking and recognition
-
Oct.
-
S. Liwicki, S. Zafeiriou, G. Tzimiropoulos, and M. Pantic, "Efficient online subspace learning with an indefinite Kernel for visual tracking and recognition," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1624-1636, Oct. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.10
, pp. 1624-1636
-
-
Liwicki, S.1
Zafeiriou, S.2
Tzimiropoulos, G.3
Pantic, M.4
-
10
-
-
0025449027
-
Perceptron-based learning algorithms
-
Feb.
-
S. I. Gallant, "Perceptron-based learning algorithms," IEEE Trans. Neural Netw., vol. 1, no. 2, pp. 179-191, Feb. 1990.
-
(1990)
IEEE Trans. Neural Netw.
, vol.1
, Issue.2
, pp. 179-191
-
-
Gallant, S.I.1
-
11
-
-
80455176946
-
Direct parallel perceptrons (DPPs): Fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks
-
Nov.
-
M. Fernandez-Delgado, J. Ribeiro, E. Cernadas, and S. B. Ameneiro, "Direct parallel perceptrons (DPPs): Fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks," IEEE Trans. Neural Netw., vol. 22, no. 11, pp. 1837-1848, Nov. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.11
, pp. 1837-1848
-
-
Fernandez-Delgado, M.1
Ribeiro, J.2
Cernadas, E.3
Ameneiro, S.B.4
-
12
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
DOI 10.1023/A:1007662407062
-
Y. Freund and R. E. Schapire, "Large margin classification using the perceptron algorithm," Mach. Learn., vol. 37, no. 3, pp. 277-296, 1999. (Pubitemid 32210619)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.E.2
-
13
-
-
55249109544
-
The forgetron: A Kernel-based Perceptron on a budget
-
O. Dekel, S. S. Shwartz, and Y. Singer, "The forgetron: A Kernel-based Perceptron on a budget," SIAM J. Comput., vol. 37, no. 5, pp. 1342-1372, 2008.
-
(2008)
SIAM J. Comput.
, vol.37
, Issue.5
, pp. 1342-1372
-
-
Dekel, O.1
Shwartz, S.S.2
Singer, Y.3
-
14
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Jan.
-
J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization," J. Mach. Learn. Res., vol. 12, pp. 2121-2159, Jan. 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
15
-
-
3543096272
-
The Kernel recursive least squares algorithm
-
Aug.
-
Y. Engel, S. Mannor, and R. Meir, "The Kernel recursive least squares algorithm," IEEE Trans. Sig. Process., vol. 52, no. 8, pp. 2275-2185, Aug. 2004.
-
(2004)
IEEE Trans. Sig. Process.
, vol.52
, Issue.8
, pp. 2275-12185
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
16
-
-
70349251856
-
Limited stochastic meta-descent for Kernel-based online learning
-
W. He, "Limited stochastic meta-descent for Kernel-based online learning," Neural Comput., vol. 21, no. 9, pp. 2667-2686, 2009.
-
(2009)
Neural Comput.
, vol.21
, Issue.9
, pp. 2667-2686
-
-
He, W.1
-
17
-
-
73549088063
-
Bounded Kernel-based online learning
-
Nov.
-
F. Orabona, J. Keshet, and B. Caputo, "Bounded Kernel-based online learning," J. Mach. Learn. Res., vol. 10, pp. 2643-2666, Nov. 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2643-2666
-
-
Orabona, F.1
Keshet, J.2
Caputo, B.3
-
18
-
-
84865223593
-
Adaptive learning in complex reproducing Kernel Hilbert spaces employing Wirtinger's subgradients
-
Mar.
-
P. Bouboulis, K. Slavakis, and S. Theodoridis, "Adaptive learning in complex reproducing Kernel Hilbert spaces employing Wirtinger's subgradients," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 3, pp. 425-438, Mar. 2012.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, Issue.3
, pp. 425-438
-
-
Bouboulis, P.1
Slavakis, K.2
Theodoridis, S.3
-
19
-
-
33646950083
-
An online support vector machine for abnormal events detection
-
DOI 10.1016/j.sigpro.2005.09.027, PII S0165168405003555
-
M. Davy, F. Desobry, A. Gretton, and C. Doncarli, "An online support vector machine for abnormal events detection," Sig. Process., vol. 86, pp. 2009-2025, Sep. 2006. (Pubitemid 43795456)
-
(2006)
Signal Processing
, vol.86
, Issue.8
, pp. 2009-2025
-
-
Davy, M.1
Desobry, F.2
Gretton, A.3
Doncarli, C.4
-
20
-
-
33646032356
-
The p-norm generalization of the LMS algorithm for adaptive filtering
-
May
-
J. Kivinen, M. K. Warmuth, and B. Hassibi, "The p-norm generalization of the LMS algorithm for adaptive filtering," IEEE Trans. Sig. Process., vol. 54, no. 5, pp. 1782-1793, May 2006.
-
(2006)
IEEE Trans. Sig. Process.
, vol.54
, Issue.5
, pp. 1782-1793
-
-
Kivinen, J.1
Warmuth, M.K.2
Hassibi, B.3
-
21
-
-
79955364171
-
Real-time discriminative background subtraction
-
Oct.
-
L. Cheng, M. Gong, D. Schuurmans, and T. Caelli, "Real-time discriminative background subtraction," IEEE Trans. Image Process., vol. 20, no. 10, pp. 1401-1414, Oct. 2011.
-
(2011)
IEEE Trans. Image Process.
, vol.20
, Issue.10
, pp. 1401-1414
-
-
Cheng, L.1
Gong, M.2
Schuurmans, D.3
Caelli, T.4
-
23
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
Cambridge MA: MIT Press
-
J. C. Platt, "Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Machines. Cambridge MA: MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
-
-
Platt, J.C.1
-
24
-
-
77953101472
-
Inference from aging information
-
Jun.
-
E. A. D. Oliveira and N. Caticha, "Inference from aging information," IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 1015-1020, Jun. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.6
, pp. 1015-1020
-
-
Oliveira, E.A.D.1
Caticha, N.2
-
25
-
-
78751569728
-
Adaptive learning of multi-subspace for foreground detection under illuminiation changes
-
Y. Dong and G. N. DeSouza, "Adaptive learning of multi-subspace for foreground detection under illuminiation changes," Comput. Vis. Image Understan., vol. 115, no. 1, pp. 31-39, 2011.
-
(2011)
Comput. Vis. Image Understan.
, vol.115
, Issue.1
, pp. 31-39
-
-
Dong, Y.1
DeSouza, G.N.2
-
26
-
-
18144431335
-
Mercer theorem for RKHS on noncompact sets
-
DOI 10.1016/j.jco.2004.09.002, PII S0885064X04000822
-
H. Sun, "Mercer theorem for RKHS on noncompact sets," J. Complex., vol. 21, no. 3, pp. 337-349, 2005. (Pubitemid 40608774)
-
(2005)
Journal of Complexity
, vol.21
, Issue.3
, pp. 337-349
-
-
Sun, H.1
-
27
-
-
0032821057
-
RKHS-based functional analysis for exact incremental learning
-
DOI 10.1016/S0925-2312(99)00112-5, PII S0925231299001125
-
S. Vijayakumar and H. Ogawa, "RKHS-based functional analysis for exact incremental learning," Neurocompting, vol. 29, pp. 85-113, Oct. 1999. (Pubitemid 29440947)
-
(1999)
Neurocomputing
, vol.29
, Issue.1-3
, pp. 85-113
-
-
Vijayakumar, S.1
Ogawa, H.2
-
30
-
-
84865131152
-
A generalized representer theory
-
B. Scholkopf, R. Herbric, and A. J. Smola, "A generalized representer theory," in Proc. Annu. Conf. Comput. Learn. Theory, 2001, pp. 416-426.
-
Proc. Annu. Conf. Comput. Learn. Theory, 2001
, pp. 416-426
-
-
Scholkopf, B.1
Herbric, R.2
Smola, A.J.3
-
31
-
-
78650751806
-
Error tolerance based support vector machine for regression
-
G. Li, C. Wen, G. B. Huang, and Y. Chen, "Error tolerance based support vector machine for regression," Neurocompting, vol. 74, no. 5, pp. 771-782, 2011.
-
(2011)
Neurocompting
, vol.74
, Issue.5
, pp. 771-782
-
-
Li, G.1
Wen, C.2
Huang, G.B.3
Chen, Y.4
-
32
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the support of a high-dimensional distribution," Neural Comput., vol. 13, no. 7, pp. 1443-1471, 2001.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
33
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
34
-
-
0344551957
-
Segmenting foreground objects from a dynamic textured background via a robust Kalman filter
-
J. Zhong and S. Sclaroff, "Segmenting foreground objects from a dynamic textured background via a robust Kalman filter," in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2003, pp. 44-50.
-
Proc. IEEE Int. Conf. Comput. Vis., Oct. 2003
, pp. 44-50
-
-
Zhong, J.1
Sclaroff, S.2
|