-
1
-
-
24144494531
-
Stochastic optimization for high-dimensional tracking in dense range maps
-
Bray, M., Koller-Meier, E., Müller, P., Schraudolph, N. N., & Van Gool, L. (2005). Stochastic optimization for high-dimensional tracking in dense range maps. Vision, Image and Signal Processing, 152(4), 501–512.
-
(2005)
Vision, Image and Signal Processing
, vol.152
, Issue.4
, pp. 501-512
-
-
Bray, M.1
Koller-Meier, E.2
Müller, P.3
Schraudolph, N. N.4
Van Gool, L.5
-
2
-
-
33845293747
-
Fast stochastic optimization for articulated structure tracking
-
Bray, M., Koller-Meier, E., Schraudolph, N. N., & Van Gool, L. (2007). Fast stochastic optimization for articulated structure tracking. Image and Vision Computing, 25(3), 352–364.
-
(2007)
Image and Vision Computing
, vol.25
, Issue.3
, pp. 352-364
-
-
Bray, M.1
Koller-Meier, E.2
Schraudolph, N. N.3
Van Gool, L.4
-
3
-
-
0030145382
-
Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent
-
Cesa-Bianchi, N., Long, P., & Warmuth, M. (1996). Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks, 7(2), 604–619.
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.2
, pp. 604-619
-
-
Cesa-Bianchi, N.1
Long, P.2
Warmuth, M.3
-
4
-
-
85157960581
-
Implicit online learning with kernels
-
B. Schölkopf, J. Platt, & T. Hoffman (Eds), –). Cambridge, MA: MIT Press
-
Cheng, L., Vishwanathan, S. V. N., Schuurmans, D., Wang, S., & Caelli, T. (2006). Implicit online learning with kernels. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 256–249). Cambridge, MA: MIT Press.
-
(2006)
Advances in neural information processing systems
, vol.19
, pp. 256-249
-
-
Cheng, L.1
Vishwanathan, S. V. N.2
Schuurmans, D.3
Wang, S.4
Caelli, T.5
-
5
-
-
34548170925
-
Fast iterative kernel principal component analysis
-
Günter, S., Schraudolph, N. N., & Vishwanathan, S. V. N. (2007). Fast iterative kernel principal component analysis. Journal of Machine Learning Research, 8, 1893– 1918.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1893-1918
-
-
Günter, S.1
Schraudolph, N. N.2
Vishwanathan, S. V. N.3
-
7
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1, 295–307.
-
(1988)
Neural Networks
, vol.1
, pp. 295-307
-
-
Jacobs, R. A.1
-
8
-
-
25844445939
-
Iterative kernel principal component analysis for image modeling
-
Kim, K. I., Franz, M. O., & Schölkopf, B. (2005). Iterative kernel principal component analysis for image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1351–1366.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.9
, pp. 1351-1366
-
-
Kim, K. I.1
Franz, M. O.2
Schölkopf, B.3
-
9
-
-
84898940321
-
Online learning with kernels
-
T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds), –). Cambridge, MA: MIT Press
-
Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 785–792). Cambridge, MA: MIT Press.
-
(2002)
Advances in neural information processing systems
, vol.14
, pp. 785-792
-
-
Kivinen, J.1
Smola, A. J.2
Williamson, R. C.3
-
10
-
-
3543110224
-
Online learning with kernels
-
Kivinen, J., Smola, A. J., & Williamson, R. C. (2004). Online learning with kernels. IEEE Transactions on Signal Processing, 52(8), 2165–2176.
-
(2004)
IEEE Transactions on Signal Processing
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A. J.2
Williamson, R. C.3
-
11
-
-
0008815681
-
Exponentiated gradient versus gradient descent for linear predictors
-
Kivinen, J., & Warmuth, M. K. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1), 1–64.
-
(1997)
Information and Computation
, vol.132
, Issue.1
, pp. 1-64
-
-
Kivinen, J.1
Warmuth, M. K.2
-
12
-
-
17444438778
-
New support vector algorithms
-
Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245.
-
(2000)
Neural Computation
, vol.12
, Issue.5
, pp. 1207-1245
-
-
Schölkopf, B.1
Smola, A. J.2
Williamson, R. C.3
Bartlett, P. L.4
-
13
-
-
0033338205
-
Local gain adaptation in stochastic gradient descent
-
London: IEE
-
Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artificial Neural Networks (pp. 569–574). London: IEE.
-
(1999)
Proc. Intl. Conf. Artificial Neural Networks
, pp. 569-574
-
-
Schraudolph, N. N.1
-
14
-
-
0036631778
-
Fast curvature matrix-vector products for second-order gradient descent
-
Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14(7), 1723–1738.
-
(2002)
Neural Computation
, vol.14
, Issue.7
, pp. 1723-1738
-
-
Schraudolph, N. N.1
-
15
-
-
84898942573
-
Online independent component analysis with local learning rate adaptation
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds), –). Cambridge, MA: MIT Press
-
Schraudolph, N. N., & Giannakopoulos, X. (2000). Online independent component analysis with local learning rate adaptation. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 789–795). Cambridge, MA: MIT Press.
-
(2000)
Advances in neural information processing systems
, vol.12
, pp. 789-795
-
-
Schraudolph, N. N.1
Giannakopoulos, X.2
-
16
-
-
52149116388
-
Fast online policy gradient learning with SMD gain vector adaptation
-
Y. Weiss, B. Schölkopf, & J. Platt (Eds), –). Cambridge, MA: MIT Press
-
Schraudolph, N. N., Yu, J., & Aberdeen, D. (2006). Fast online policy gradient learning with SMD gain vector adaptation. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1185–1192). Cambridge, MA: MIT Press.
-
(2006)
Advances in neural information processing systems
, vol.18
, pp. 1185-1192
-
-
Schraudolph, N. N.1
Yu, J.2
Aberdeen, D.3
-
17
-
-
33744740175
-
Online learning algorithms
-
Smale, S., & Yao, Y. (2006). Online learning algorithms. Foundations of Computational Mathematics, 6(2), 145–170.
-
(2006)
Foundations of Computational Mathematics
, vol.6
, Issue.2
, pp. 145-170
-
-
Smale, S.1
Yao, Y.2
-
21
-
-
34250731290
-
Accelerated training conditional random fields with stochastic gradient methods
-
New York: ACM
-
Vishwanathan, S. V. N., Schraudolph, N. N., Schmidt, M., & Murphy K. (2006). Accelerated training conditional random fields with stochastic gradient methods. In Proc. Intl. Conf. Machine Learning (pp. 969–976). New York: ACM.
-
(2006)
Proc. Intl. Conf. Machine Learning
, pp. 969-976
-
-
Vishwanathan, S. V. N.1
Schraudolph, N. N.2
Schmidt, M.3
Murphy, K.4
-
22
-
-
33745294113
-
Step size adaptation in reproducing kernel Hilbert space
-
Vishwanathan, S. V. N., Schraudolph, N. N., & Smola, A. J. (2006). Step size adaptation in reproducing kernel Hilbert space. Journal of Machine Learning Research, 7, 1107–1133.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1107-1133
-
-
Vishwanathan, S. V. N.1
Schraudolph, N. N.2
Smola, A. J.3
|