메뉴 건너뛰기




Volumn 21, Issue 9, 2009, Pages 2667-2686

Limited Stochastic Meta-Descent for Kernel-Based Online Learning

Author keywords

[No Author keywords available]

Indexed keywords

E-LEARNING;

EID: 70349251856     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.07-08-809     Document Type: Article
Times cited : (4)

References (24)
  • 3
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent
    • Cesa-Bianchi, N., Long, P., & Warmuth, M. (1996). Worst-case quadratic loss bounds for on-line prediction of linear functions by gradient descent. IEEE Transactions on Neural Networks, 7(2), 604–619.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.2    Warmuth, M.3
  • 7
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1, 295–307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R. A.1
  • 9
    • 84898940321 scopus 로고    scopus 로고
    • Online learning with kernels
    • T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds), –). Cambridge, MA: MIT Press
    • Kivinen, J., Smola, A. J., & Williamson, R. C. (2002). Online learning with kernels. In T. G. Dietterich, S. Becker, & Z. Ghahramani (Eds.), Advances in neural information processing systems, 14 (pp. 785–792). Cambridge, MA: MIT Press.
    • (2002) Advances in neural information processing systems , vol.14 , pp. 785-792
    • Kivinen, J.1    Smola, A. J.2    Williamson, R. C.3
  • 11
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Kivinen, J., & Warmuth, M. K. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1), 1–64.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-64
    • Kivinen, J.1    Warmuth, M. K.2
  • 13
    • 0033338205 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • London: IEE
    • Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient descent. In Proc. Intl. Conf. Artificial Neural Networks (pp. 569–574). London: IEE.
    • (1999) Proc. Intl. Conf. Artificial Neural Networks , pp. 569-574
    • Schraudolph, N. N.1
  • 14
    • 0036631778 scopus 로고    scopus 로고
    • Fast curvature matrix-vector products for second-order gradient descent
    • Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient descent. Neural Computation, 14(7), 1723–1738.
    • (2002) Neural Computation , vol.14 , Issue.7 , pp. 1723-1738
    • Schraudolph, N. N.1
  • 15
    • 84898942573 scopus 로고    scopus 로고
    • Online independent component analysis with local learning rate adaptation
    • S. A. Solla, T. K. Leen, & K.-R. Müller (Eds), –). Cambridge, MA: MIT Press
    • Schraudolph, N. N., & Giannakopoulos, X. (2000). Online independent component analysis with local learning rate adaptation. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 789–795). Cambridge, MA: MIT Press.
    • (2000) Advances in neural information processing systems , vol.12 , pp. 789-795
    • Schraudolph, N. N.1    Giannakopoulos, X.2
  • 16
    • 52149116388 scopus 로고    scopus 로고
    • Fast online policy gradient learning with SMD gain vector adaptation
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds), –). Cambridge, MA: MIT Press
    • Schraudolph, N. N., Yu, J., & Aberdeen, D. (2006). Fast online policy gradient learning with SMD gain vector adaptation. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1185–1192). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 1185-1192
    • Schraudolph, N. N.1    Yu, J.2    Aberdeen, D.3
  • 18
  • 24


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.