메뉴 건너뛰기




Volumn 21, Issue 6, 2010, Pages 1015-1020

Inference from aging information

Author keywords

Online Bayesian algorithms; Pattern classification; Timevarying environment

Indexed keywords

AD HOC METHODS; ADAPTIVE WINDOW SIZE; BAYESIAN; BAYESIAN ALGORITHMS; DATA COLLECTION; DATA DISTRIBUTION; INFORMATION GEOMETRY; LEARNING MACHINES; LEARNING TASKS; LOCAL TRAPS; MEMORY WINDOW; PATTERN CLASSIFICATION; POSTERIOR DISTRIBUTIONS; THEORETICAL APPROACH; TIME-SCALES; TIME-VARYING ENVIRONMENTS;

EID: 77953101472     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2046422     Document Type: Article
Times cited : (6)

References (16)
  • 1
    • 59449099181 scopus 로고    scopus 로고
    • Updating probabilities with data and moments
    • K. H. Knuth, A. Caticha, J. L. Center, A. Giffin, and C. C. Rodriguez, Eds., Nov.
    • A. Giffin and A. Caticha, "Updating probabilities with data and moments," in Proc. Bayesian Inference Maximum Entropy Methods Sci. Eng. Conf., K. H. Knuth, A. Caticha, J. L. Center, A. Giffin, and C. C. Rodriguez, Eds., Nov. 2007, vol.954, pp. 74-84.
    • (2007) Proc. Bayesian Inference Maximum Entropy Methods Sci. Eng. Conf. , vol.954 , pp. 74-84
    • Giffin, A.1    Caticha, A.2
  • 2
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • J. Schlimmer and R. G. Jr, "Incremental learning from noisy data," Mach. Learn., vol.1, no.3, pp. 317-354, 1986.
    • (1986) Mach. Learn. , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.1    G. Jr., R.2
  • 4
    • 21144470645 scopus 로고
    • Learning drifting concepts with neural networks
    • June
    • M. Biehl and H. Schwarze, "Learning drifting concepts with neural networks," J. Phys. A, Math. Gen., vol.26, pp. 2651-2665, June 1993.
    • (1993) J. Phys. A, Math. Gen. , vol.26 , pp. 2651-2665
    • Biehl, M.1    Schwarze, H.2
  • 5
    • 21344484307 scopus 로고
    • Lower bounds on generalization errors for drifting rules
    • Nov.
    • O. Kinouchi and N. Caticha, "Lower bounds on generalization errors for drifting rules," J. Phys. A, Math. Gen., vol.26, pp. 6161-6171, Nov. 1993.
    • (1993) J. Phys. A, Math. Gen. , vol.26 , pp. 6161-6171
    • Kinouchi, O.1    Caticha, N.2
  • 6
    • 0032136932 scopus 로고    scopus 로고
    • Statistical mechanics of online learning of drifting concepts: A variational approach
    • DOI 10.1023/A:1007428731714
    • R. Vicente, O. Kinouchi, and N. Caticha, "Statistical mechanics of online learning of drifting concepts: A variational approach," Mach. Learn., vol.32, pp. 179-201, Aug. 1998. (Pubitemid 40626080)
    • (1998) Machine Learning , vol.32 , Issue.2 , pp. 179-201
    • Vicente, R.1    Kinouchi, O.2    Caticha, N.3
  • 8
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to on-line learning
    • D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, Apr.
    • M. Opper, "A Bayesian approach to on-line learning," in On-Line Learning in Neural Networks, D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, Apr. 1998, pp. 363-378.
    • (1998) On-Line Learning in Neural Networks , pp. 363-378
    • Opper, M.1
  • 9
    • 0013182522 scopus 로고    scopus 로고
    • Optimal perceptron learning: An online Bayesian approach
    • D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, Apr.
    • S. Solla and O. Winther, "Optimal perceptron learning: An online Bayesian approach," in On-line Learning in Neural Networks, D. Saad, Ed. Cambridge, U.K.: Cambridge Univ. Press, Apr. 1998, pp. 379-398.
    • (1998) On-line Learning in Neural Networks , pp. 379-398
    • Solla, S.1    Winther, O.2
  • 11
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Apr.
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol.23, pp. 69-101, Apr. 1996.
    • (1996) Mach. Learn. , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 13
    • 0036592037 scopus 로고    scopus 로고
    • On-line learning in changing environments with applications in supervised and unsupervised learning
    • Jun.
    • M. Murata, M. Kawanabe, A. Ziehe, K. Müller, and S. Amari, "On-line learning in changing environments with applications in supervised and unsupervised learning," Neural Netw., vol.15, pp. 743-760, Jun. 2002.
    • (2002) Neural Netw. , vol.15 , pp. 743-760
    • Murata, M.1    Kawanabe, M.2    Ziehe, A.3    Müller, K.4    Amari, S.5
  • 14
    • 34248663836 scopus 로고    scopus 로고
    • Performance of the Bayesian online algorithm for the perceptron
    • May
    • E. A. de Oliveira and R. C. Alamino, "Performance of the Bayesian online algorithm for the perceptron," IEEE Trans. Neural Netw., vol.18, no.3, pp. 902-905, May 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 902-905
    • De Oliveira, E.A.1    Alamino, R.C.2
  • 15
    • 34047169903 scopus 로고    scopus 로고
    • The Rosenblatt Bayesian algorithm learning in a nonstationary environment
    • Mar.
    • E. A. de Oliveira, "The Rosenblatt Bayesian algorithm learning in a nonstationary environment," IEEE Trans. Neural Netw., vol.18, no.2, pp. 584-588, Mar. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.2 , pp. 584-588
    • De Oliveira, E.A.1
  • 16
    • 36149029748 scopus 로고
    • Optimal generalization in perceptrons
    • O. Kinouchi and N. Caticha, "Optimal generalization in perceptrons," J. Phys. A, Math. Gen., vol.25, pp. 6243-6250, 1992.
    • (1992) J. Phys. A, Math. Gen. , vol.25 , pp. 6243-6250
    • Kinouchi, O.1    Caticha, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.