메뉴 건너뛰기




Volumn 46, Issue 8, 2013, Pages 2391-2404

Multiple optimized online support vector regression for adaptive time series prediction

Author keywords

Adaptive prediction strategy; Data driven prognostics; Online prediction; Online SVR

Indexed keywords

DIGITAL STORAGE; EFFICIENCY; EXPERIMENTS; LEARNING ALGORITHMS; OPTIMIZATION; SYSTEMS ENGINEERING;

EID: 84879103867     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2013.04.033     Document Type: Article
Times cited : (17)

References (36)
  • 1
    • 84857361309 scopus 로고    scopus 로고
    • Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance
    • J. Sun, H. Zuo, W. Wang, and M.G. Pecht Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance Mech. Syst. Signal Pr. 28 2012 585 596
    • (2012) Mech. Syst. Signal Pr. , vol.28 , pp. 585-596
    • Sun, J.1    Zuo, H.2    Wang, W.3    Pecht, M.G.4
  • 4
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
    • E. Zio, and F.D. Maio A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system Reliab. Eng. Syst. Safe 95 2010 49 57
    • (2010) Reliab. Eng. Syst. Safe , vol.95 , pp. 49-57
    • Zio, E.1    Maio, F.D.2
  • 5
    • 79955584653 scopus 로고    scopus 로고
    • Remaining useful life estimation - A review on the statistical data driven approaches
    • X.S. Si, W. Wang, C. Hu, and D. Zhou Remaining useful life estimation - a review on the statistical data driven approaches Eur. J. Oper. Res. 213 2011 1 14
    • (2011) Eur. J. Oper. Res. , vol.213 , pp. 1-14
    • Si, X.S.1    Wang, W.2    Hu, C.3    Zhou, D.4
  • 7
    • 48049095242 scopus 로고    scopus 로고
    • An integrated approach to battery health monitoring using bayesian regression and state estimation
    • Baltimore. MD, USA
    • B. Saha, K. Goebel, S. Poll, J. Christophersen, An integrated approach to battery health monitoring using bayesian regression and state estimation, in: Proc. 2007 IEEE Autotestcon, Baltimore. MD, USA, 2007, pp. 646-653.
    • (2007) Proc. 2007 IEEE Autotestcon , pp. 646-653
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 8
    • 77952272836 scopus 로고    scopus 로고
    • A particle filtering approach for on-line failure prognosis in a planetary carrier plate
    • M.E. Orchard, and G.J. Vachtsevanos A particle filtering approach for on-line failure prognosis in a planetary carrier plate Int. J. Fuzzy Logic Intell. Syst. 7 2007 221 227
    • (2007) Int. J. Fuzzy Logic Intell. Syst. , vol.7 , pp. 221-227
    • Orchard, M.E.1    Vachtsevanos, G.J.2
  • 9
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework
    • B. Saha, K. Goebel, S. Poll, and J. Christophersen Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework IEEE Trans. Instrum. Meas. 58 2009 291 296
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 11
    • 84872093306 scopus 로고    scopus 로고
    • Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena
    • B. Olivares, M. Cerda, M. Orchard, and J.F. Silva Particle-filtering- based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena IEEE Trans. Instrum. Meas. 62 2013 364 376
    • (2013) IEEE Trans. Instrum. Meas. , vol.62 , pp. 364-376
    • Olivares, B.1    Cerda, M.2    Orchard, M.3    Silva, J.F.4
  • 12
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • M.E. Tipping Sparse Bayesian learning and the relevance vector machine J. Mach. Learn. Res. 1 2001 211 244
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 13
    • 77249099817 scopus 로고    scopus 로고
    • Variant methods of reduced set selection for reduced support vector machines
    • L.J. Chien, C.C. Chang, and Y.J. Lee Variant methods of reduced set selection for reduced support vector machines J. Inf. Sci. Eng. 26 2010 183 196
    • (2010) J. Inf. Sci. Eng. , vol.26 , pp. 183-196
    • Chien, L.J.1    Chang, C.C.2    Lee, Y.J.3
  • 14
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, and B. Schölkopf A tutorial on support vector regression Stat. Comput. 14 2004 199 222
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 16
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • G. Cauwenberghs, and T. Poggio Incremental and decremental support vector machine learning Mach. Learn. 44 2001 409 415
    • (2001) Mach. Learn. , vol.44 , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 18
    • 0032821057 scopus 로고    scopus 로고
    • RKHS-based functional analysis for exact incremental learning
    • S. Vijayakumar, and H. Ogawa RKHS-based functional analysis for exact incremental learning Neurocomputing 29 1999 85 113
    • (1999) Neurocomputing , vol.29 , pp. 85-113
    • Vijayakumar, S.1    Ogawa, H.2
  • 20
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • J.H. Ma, J. Theiler, and S. Perkins Accurate on-line support vector regression Neural Comput. 15 2003 2683 2703
    • (2003) Neural Comput. , vol.15 , pp. 2683-2703
    • Ma, J.H.1    Theiler, J.2    Perkins, S.3
  • 23
    • 34248636293 scopus 로고    scopus 로고
    • Fast sparse approximation for least squares support vector machine
    • L. Jiao, L. Bo, and L. Wang Fast sparse approximation for least squares support vector machine IEEE Trans. Neural Networks 18 2007 685 697
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 685-697
    • Jiao, L.1    Bo, L.2    Wang, L.3
  • 24
    • 34147202252 scopus 로고    scopus 로고
    • Review of SVM-based control and online training algorithm
    • D. Wang, and B. Jiang Review of SVM-based control and online training algorithm J. Syst. Simul. 19 2007 1177 1181
    • (2007) J. Syst. Simul. , vol.19 , pp. 1177-1181
    • Wang, D.1    Jiang, B.2
  • 25
    • 33646353200 scopus 로고    scopus 로고
    • Incremental and online learning algorithm for regression least squares support vector machine
    • H. Zhang, and X. Wang Incremental and online learning algorithm for regression least squares support vector machine Chinese J. Comput. 29 2006 400 406
    • (2006) Chinese J. Comput. , vol.29 , pp. 400-406
    • Zhang, H.1    Wang, X.2
  • 26
    • 84872744828 scopus 로고    scopus 로고
    • A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft
    • G. Jin, D.E. Matthews, and Z. Zhou A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft Reliab. Eng. Syst. Safe 113 2013 7 20
    • (2013) Reliab. Eng. Syst. Safe , vol.113 , pp. 7-20
    • Jin, G.1    Matthews, D.E.2    Zhou, Z.3
  • 27
    • 84855868784 scopus 로고    scopus 로고
    • An LSSVR-based algorithm for online system condition prognostics
    • J. Qu, and M.J. Zuo An LSSVR-based algorithm for online system condition prognostics Expert Syst. Appl. 39 2012 6089 6102
    • (2012) Expert Syst. Appl. , vol.39 , pp. 6089-6102
    • Qu, J.1    Zuo, M.J.2
  • 28
    • 84865017324 scopus 로고    scopus 로고
    • A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods
    • Q. Liu, M. Dong, and Y. Peng A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods Mech. Syst. Signal Pr. 32 2012 331 348
    • (2012) Mech. Syst. Signal Pr. , vol.32 , pp. 331-348
    • Liu, Q.1    Dong, M.2    Peng, Y.3
  • 29
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • C. Golda, and P. Sollichb Model selection for support vector machine classification Neurocomputing 55 2003 221 249
    • (2003) Neurocomputing , vol.55 , pp. 221-249
    • Golda, C.1    Sollichb, P.2
  • 30
    • 22844442782 scopus 로고    scopus 로고
    • Automatic model selection for the optimization of SVM kernels
    • N.E. Ayata, M. Cherieta, and C.Y. Suenb Automatic model selection for the optimization of SVM kernels Pattern Recogn. 38 2005 1733 1745
    • (2005) Pattern Recogn. , vol.38 , pp. 1733-1745
    • Ayata, N.E.1    Cherieta, M.2    Suenb, C.Y.3
  • 31
    • 84862958850 scopus 로고    scopus 로고
    • Optimal image watermarking algorithm based on LWT-SVD via multi-objective ant colony optimization
    • K. Loukhaoukha, J.Y. Chouinard, and M.H. Taieb Optimal image watermarking algorithm based on LWT-SVD via multi-objective ant colony optimization J. Inform. Hiding Multimedia Signal Process. 2 2011 303 319
    • (2011) J. Inform. Hiding Multimedia Signal Process. , vol.2 , pp. 303-319
    • Loukhaoukha, K.1    Chouinard, J.Y.2    Taieb, M.H.3
  • 33
    • 33750446999 scopus 로고    scopus 로고
    • Multiscale reconstruction of time series
    • A.P. Nawroth, and J. Peinke Multiscale reconstruction of time series Phys. Lett. A 360 2006 234 237
    • (2006) Phys. Lett. A , vol.360 , pp. 234-237
    • Nawroth, A.P.1    Peinke, J.2
  • 34
    • 70449530853 scopus 로고    scopus 로고
    • K-sample subsampling in general space: The case of independent time series
    • D.N. Politis, and J.P. Romano K-sample subsampling in general space: the case of independent time series J. Multivar. Anal. 101 2010 316 326
    • (2010) J. Multivar. Anal. , vol.101 , pp. 316-326
    • Politis, D.N.1    Romano, J.P.2
  • 35
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 36
    • 0033929205 scopus 로고    scopus 로고
    • Online optimization of the Tennessee Eastman challenge problem
    • P.M. Duvall, and J.B. Riggs Online optimization of the Tennessee Eastman challenge problem J. Process Contr. 10 2000 19 33
    • (2000) J. Process Contr. , vol.10 , pp. 19-33
    • Duvall, P.M.1    Riggs, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.