메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 331-348

A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods

Author keywords

Hidden semi Markov model; Joint multi step ahead algorithm; Online prognosis; Prognostic model; Sequential Monte Carlo method

Indexed keywords

CHANGE-POINTS; CONDITION BASED MAINTENANCE; ENVIRONMENTAL CONDITIONS; HEALTH PROGNOSIS; HIDDEN SEMI-MARKOV MODELS; KEY PROCESS; MAINTENANCE COST; ONLINE PROGNOSIS; POTENTIAL APPLICATIONS; PROGNOSTIC MODEL; RECOGNITION ALGORITHM; RELATED RISK; SEQUENTIAL MONTE CARLO METHODS; TIME-SERIES DATA; TRANSITION PROBABILITIES; USEFUL LIFETIME;

EID: 84865017324     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.05.004     Document Type: Article
Times cited : (77)

References (24)
  • 1
    • 34248343774 scopus 로고    scopus 로고
    • A two-stage prognosis model in condition based maintenance
    • W.B. Wang A two-stage prognosis model in condition based maintenance Eur. J. Oper. Res. 182 2007 1177 1187
    • (2007) Eur. J. Oper. Res. , vol.182 , pp. 1177-1187
    • Wang, W.B.1
  • 2
    • 70449518186 scopus 로고    scopus 로고
    • Machine condition prognosis based on sequential Monte Carlo method
    • W. Caesarendra, G. Niu, and B.S. Yang Machine condition prognosis based on sequential Monte Carlo method Expert Syst. Appl. 37 2010 2412 2420
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2412-2420
    • Caesarendra, W.1    Niu, G.2    Yang, B.S.3
  • 3
    • 22444443657 scopus 로고    scopus 로고
    • An alternative degradation reliability modeling approach using maximum likelihood estimation
    • W. Huang, and D. Dietrich An alternative degradation reliability modeling approach using maximum likelihood estimation IEEE Trans. Reliab. 54 2 2005 310 317
    • (2005) IEEE Trans. Reliab. , vol.54 , Issue.2 , pp. 310-317
    • Huang, W.1    Dietrich, D.2
  • 5
    • 1942453855 scopus 로고    scopus 로고
    • Predicting remaining life by fusing the physics of failure modeling with diagnostics
    • G.J. Kacprzynski, A. Sarlashkar, and M.J. Roemer Predicting remaining life by fusing the physics of failure modeling with diagnostics J. Miner. Met. Mater. Soc. 56 2004 29 35
    • (2004) J. Miner. Met. Mater. Soc. , vol.56 , pp. 29-35
    • Kacprzynski, G.J.1    Sarlashkar, A.2    Roemer, M.J.3
  • 6
    • 33645156446 scopus 로고    scopus 로고
    • Calculation of reliability function and remaining useful life for a Markov failure time process
    • D. Banjevic, and A.K.S. Jardine Calculation of reliability function and remaining useful life for a Markov failure time process IMA J. Manage. Math. 17 2 2006 115 130
    • (2006) IMA J. Manage. Math. , vol.17 , Issue.2 , pp. 115-130
    • Banjevic, D.1    Jardine, A.K.S.2
  • 9
    • 10044273024 scopus 로고    scopus 로고
    • Automatic diagnostics and prognostics of energy conversion processes via knowledge based systems
    • T. Biagetti, and E. Sciubba Automatic diagnostics and prognostics of energy conversion processes via knowledge based systems Energy 29 2004 2553 2572
    • (2004) Energy , vol.29 , pp. 2553-2572
    • Biagetti, T.1    Sciubba, E.2
  • 10
    • 79953662678 scopus 로고    scopus 로고
    • Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM
    • S.S. Leu, and J.W.A. Tri Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM Eng. Appl. Artif. Intell. 24 2011 658 665
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 658-665
    • Leu, S.S.1    Tri, J.W.A.2
  • 11
    • 77953873857 scopus 로고    scopus 로고
    • A model for real-time failure prognosis based on hidden Markov model and belief rule base
    • Z.J. Zhou, C.H. Hu, D.L. Xu, M.Y. Chen, and D.H. Zhou A model for real-time failure prognosis based on hidden Markov model and belief rule base Eur. J. Oper. Res. 207 2010 269 283
    • (2010) Eur. J. Oper. Res. , vol.207 , pp. 269-283
    • Zhou, Z.J.1    Hu, C.H.2    Xu, D.L.3    Chen, M.Y.4    Zhou, D.H.5
  • 12
    • 0031586003 scopus 로고    scopus 로고
    • Prediction of complete gene structures in human genomic DNA
    • C. Burge, and S. Karlin Prediction of complete gene structures in human genomic DNA J. Mol. Biol. 268 1 1997 78 94
    • (1997) J. Mol. Biol. , vol.268 , Issue.1 , pp. 78-94
    • Burge, C.1    Karlin, S.2
  • 14
    • 13244265565 scopus 로고    scopus 로고
    • Efficient decoding algorithms for generalized hidden Markov model gene finders
    • W.H. Majoros, M. Pertea, A.L. Delche, and S.L. Salzberg Efficient decoding algorithms for generalized hidden Markov model gene finders BMC Bioinf. 6 2005 16
    • (2005) BMC Bioinf. , vol.6 , pp. 16
    • Majoros, W.H.1    Pertea, M.2    Delche, A.L.3    Salzberg, S.L.4
  • 15
    • 33751094343 scopus 로고    scopus 로고
    • Hidden semi-Markov model based methodology for multi-sensor equipment health diagnosis and prognosis
    • M. Dong, and D. He Hidden semi-Markov model based methodology for multi-sensor equipment health diagnosis and prognosis Eur. J. Oper. Res. 178 3 2007 858 878
    • (2007) Eur. J. Oper. Res. , vol.178 , Issue.3 , pp. 858-878
    • Dong, M.1    He, D.2
  • 16
    • 34147125993 scopus 로고    scopus 로고
    • A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology
    • M. Dong, and D. He A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology Mech. Syst. Signal Process. 21 2007 2248 2266
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2248-2266
    • Dong, M.1    He, D.2
  • 17
    • 78349305506 scopus 로고    scopus 로고
    • A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction
    • Y. Peng, and M. Dong A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction Mech. Syst. Signal Process. 25 2010 237 252
    • (2010) Mech. Syst. Signal Process. , vol.25 , pp. 237-252
    • Peng, Y.1    Dong, M.2
  • 18
    • 77952272836 scopus 로고    scopus 로고
    • A particle filtering approach for on-line failure prognosis in a planetary carrier plate
    • M.E. Orchard, and G.J. Vachtsevanos A particle filtering approach for on-line failure prognosis in a planetary carrier plate Int. J. Fuzzy Logic Intell. Syst. 7 4 2007 221 227
    • (2007) Int. J. Fuzzy Logic Intell. Syst. , vol.7 , Issue.4 , pp. 221-227
    • Orchard, M.E.1    Vachtsevanos, G.J.2
  • 20
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L.R. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proc. IEEE 77 1989 257 286
    • (1989) Proc. IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 21
    • 84864969051 scopus 로고    scopus 로고
    • The research of definition and feature on Dirac delta function
    • Z.H. Tang, and R.Q. Wang The research of definition and feature on Dirac delta function J. Lzhou Vocat. Tech. Coll. 9 2 2009 68 76
    • (2009) J. Lzhou Vocat. Tech. Coll. , vol.9 , Issue.2 , pp. 68-76
    • Tang, Z.H.1    Wang, R.Q.2
  • 22
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • A. Doucet, S. Godsill, and C. Andrieu On sequential Monte Carlo sampling methods for Bayesian filtering Stat. Comput. 10 2000 197 208
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.2    Andrieu, C.3
  • 23
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • A. Kong, J.S. Liu, and W.H. Wong Sequential imputations and Bayesian missing data problems J. Am. Stat. Assoc. 89 1994 278 288
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.S.2    Wong, W.H.3
  • 24
    • 33750585063 scopus 로고    scopus 로고
    • A hybrid approach to hydraulic vane pump condition monitoring and fault detection
    • K.M. Hancock, and Q. Zhang A hybrid approach to hydraulic vane pump condition monitoring and fault detection Trans. ASABE 49 4 2006 1203 1211
    • (2006) Trans. ASABE , vol.49 , Issue.4 , pp. 1203-1211
    • Hancock, K.M.1    Zhang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.