-
1
-
-
85161970767
-
Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
-
A. Bergamo and L. Torresani, "Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1-10.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1-10
-
-
Bergamo, A.1
Torresani, L.2
-
2
-
-
78149318752
-
Adapting visual category models to new domains
-
K. Saenko, B. Kulis, M. Fritz, and T. Darrell, "Adapting visual category models to new domains," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 213-226.
-
(2010)
Proc. Eur. Conf. Comput. Vis.
, pp. 213-226
-
-
Saenko, K.1
Kulis, B.2
Fritz, M.3
Darrell, T.4
-
3
-
-
80052895155
-
What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
-
Jun.
-
B. Kulis, K. Saenko, and T. Darrell, "What you saw is not what you get: Domain adaptation using asymmetric kernel transforms," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1785-1792.
-
(2011)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1785-1792
-
-
Kulis, B.1
Saenko, K.2
Darrell, T.3
-
4
-
-
84863396387
-
Domain adaptation for object recognition: An unsupervised approach
-
Nov.
-
R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 999-1006.
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 999-1006
-
-
Gopalan, R.1
Li, R.2
Chellappa, R.3
-
5
-
-
37849026107
-
Cross-domain video concept detection using adaptive svms
-
J. Yang, R. Yan, and A. G. Hauptmann, "Cross-domain video concept detection using adaptive svms," in Proc. ACM Int. Conf. Multimedia, 2007, pp. 188-197.
-
(2007)
Proc. ACM Int. Conf. Multimedia
, pp. 188-197
-
-
Yang, J.1
Yan, R.2
Hauptmann, A.G.3
-
6
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
J. Blitzer, M. Dredze, and F. Pereira, "Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification," Annu. Meeting Assoc. Comput. Linguistics, vol. 45, no. 1, p. 440, 2007
-
(2007)
Annu. Meeting Assoc. Comput. Linguistics
, vol.45
, Issue.1
, pp. 440
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
7
-
-
70350645469
-
Cross domain distribution adaptation via kernel mapping
-
E. Zhong, W. Fan, J. Peng, K. Zhang, J. Ren, D. Turaga, and O. Ver-scheure, "Cross domain distribution adaptation via kernel mapping," in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009, pp. 1027-1036.
-
(2009)
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1027-1036
-
-
Zhong, E.1
Fan, W.2
Peng, J.3
Zhang, K.4
Ren, J.5
Turaga, D.6
Ver-Scheure, O.7
-
8
-
-
84864049234
-
Analysis of representations for domain adaptation
-
Jan.
-
S. Ben-David, J. Blitzer, K. Crammer, F. Pereira, and P. M. Sokolova, "Analysis of representations for domain adaptation," Adv. Neural Inf. Process. Syst., vol. 19, p. 137, Jan. 2007.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 137
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
Sokolova, P.M.5
-
9
-
-
84860513476
-
Frustratingly easy domain adaptation
-
H. Daumé and D. Marcu, "Frustratingly easy domain adaptation," Annu. Meeting Assoc. Comput. Linguistics, vol. 45, no. 1, p. 256, 2007.
-
(2007)
Annu. Meeting Assoc. Comput. Linguistics
, vol.45
, Issue.1
, pp. 256
-
-
Daumé, H.1
Marcu, D.2
-
10
-
-
84866651199
-
Robust visual domain adaptation with low-rank reconstruction
-
Jun.
-
I.-H. Jhuo, D. Liu, D. Lee, and S.-F. Chang, "Robust visual domain adaptation with low-rank reconstruction," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2168-2175.
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 2168-2175
-
-
Jhuo, I.-H.1
Liu, D.2
Lee, D.3
Chang, S.-F.4
-
11
-
-
84866657270
-
Geodesic flow kernel for unsupervised domain adaptation
-
Jun.
-
B. Gong, Y. Shi, F. Sha, and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2066-2073.
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 2066-2073
-
-
Gong, B.1
Shi, Y.2
Sha, F.3
Grauman, K.4
-
12
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Jan.
-
J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf, "Correcting sample selection bias by unlabeled data," Adv. Neural Inf. Process. Syst., vol. 19, pp. 601-608, Jan. 2007.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 601-608
-
-
Huang, J.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Scholkopf, B.5
-
13
-
-
70450185098
-
Domain transfer svm for video concept detection
-
Jun.
-
L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, "Domain transfer svm for video concept detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1375-1381.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1375-1381
-
-
Duan, L.1
Tsang, I.W.2
Xu, D.3
Maybank, S.J.4
-
14
-
-
84863393661
-
Domain transfer multiple kernel learning
-
Mar.
-
L. Duan, I. W. Tsang, and D. Xu, "Domain transfer multiple kernel learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3, pp. 465-479, Mar. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.3
, pp. 465-479
-
-
Duan, L.1
Tsang, I.W.2
Xu, D.3
-
15
-
-
14544299611
-
On learning vector-valued functions
-
DOI 10.1162/0899766052530802
-
C. A. Micchelli and M. Pontil, "On learning vector-valued functions," Neural Comput., vol. 17, no. 1, pp. 177-204, 2005. (Pubitemid 40305887)
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
16
-
-
80053439496
-
Learning output kernels with block coordinate descent
-
F. Dinuzzo, C. S. Ong, P. Gehler, and G. Pillonetto, "Learning output kernels with block coordinate descent," in Proc. Int. Conf. Mach. Learn., 2011, pp. 1-8.
-
(2011)
Proc. Int. Conf. Mach. Learn.
, pp. 1-8
-
-
Dinuzzo, F.1
Ong, C.S.2
Gehler, P.3
Pillonetto, G.4
-
17
-
-
33747886323
-
Integrating structured biological data by Kernel Maximum Mean Discrepancy
-
DOI 10.1093/bioinformatics/btl242
-
K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola, "Integrating structured biological data by kernel maximum mean discrepancy," Bioinformatics, vol. 22, no. 14, pp. e49-e57, 2006. (Pubitemid 44288272)
-
(2006)
Bioinformatics
, vol.22
, Issue.14
-
-
Borgwardt, K.M.1
Gretton, A.2
Rasch, M.J.3
Kriegel, H.-P.4
Scholkopf, B.5
Smola, A.J.6
-
18
-
-
85123650840
-
Detecting change in data streams
-
D. Kifer, S. Ben-David, and J. Gehrke, "Detecting change in data streams," in Proc. Int. Conf. Very Large Data Bases, 2004, pp. 180-191.
-
(2004)
Proc. Int. Conf. Very Large Data Bases
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
19
-
-
34547996209
-
Information-theoretic metric learning
-
J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, "Information-theoretic metric learning," in Proc. Int. Conf. Mach. Learn., 2007, pp. 209-216.
-
(2007)
Proc. Int. Conf. Mach. Learn.
, pp. 209-216
-
-
Davis, J.V.1
Kulis, B.2
Jain, P.3
Sra, S.4
Dhillon, I.S.5
-
20
-
-
84859478057
-
Metric and kernel learning using a linear transformation
-
Mar.
-
P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, "Metric and kernel learning using a linear transformation," J. Mach. Learn. Res., vol. 13, pp. 519-547, Mar. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 519-547
-
-
Jain, P.1
Kulis, B.2
Davis, J.V.3
Dhillon, I.S.4
-
21
-
-
0002947383
-
Learning by transduction
-
A. Gammerman, V. Vovk, and V. Vapnik, "Learning by transduction," in Proc. Conf. Uncertainty Artif. Intell., 1998, pp. 148-155.
-
(1998)
Proc. Conf. Uncertainty Artif. Intell.
, pp. 148-155
-
-
Gammerman, A.1
Vovk, V.2
Vapnik, V.3
-
22
-
-
68349087851
-
Cross-domain learning methods for high-level visual concept classification
-
Oct.
-
W. Jiang, E. Zavesky, S.-F. Chang, and A. Loui, "Cross-domain learning methods for high-level visual concept classification," in Proc. IEEE Int. Conf. Image Process., Oct. 2008, pp. 161-164.
-
(2008)
Proc. IEEE Int. Conf. Image Process
, pp. 161-164
-
-
Jiang, W.1
Zavesky, E.2
Chang, S.-F.3
Loui, A.4
-
23
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf, "Large scale multiple kernel learning," J. Mach. Learn. Res., vol. 7, pp. 1531-1565, Jul. 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
24
-
-
57249084590
-
SimpleMKL
-
Jan.
-
A. Rakotomamonjy, F. Bach, S. Canu, Y. Grandvalet, and S. Canu, "SimpleMKL," J. Mach. Learn. Res., vol. 9, pp. 2491-2521, Jan. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
Canu, S.5
-
25
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
M. Varma and B. R. Babu, "More generality in efficient multiple kernel learning," in Proc. Int. Conf. Mach. Learn., 2009, pp. 1065-1072.
-
(2009)
Proc. Int. Conf. Mach. Learn.
, pp. 1065-1072
-
-
Varma, M.1
Babu, B.R.2
-
26
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Jan.
-
G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan, "Learning the kernel matrix with semidefinite programming," J. Mach. Learn. Res., vol. 5, pp. 27-72, Jan. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
27
-
-
48849086653
-
Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem
-
C. Carmeli, E. De Vito, and A. Toigo, "Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem," Anal. Appl., vol. 4, no. 4, pp. 377-408, 2006.
-
(2006)
Anal. Appl.
, vol.4
, Issue.4
, pp. 377-408
-
-
Carmeli, C.1
De Vito, E.2
Toigo, A.3
-
28
-
-
84863534141
-
Kernels for vector-valued functions: A review
-
Mar
-
M. A. Alvarez, L. Rosasco, and N. D. Lawrence, "Kernels for vector-valued functions: A review," Found. Trends Mach. Learn., vol. 4, no. 3, pp. 195-266, Mar, 2011.
-
(2011)
Found. Trends Mach. Learn.
, vol.4
, Issue.3
, pp. 195-266
-
-
Alvarez, M.A.1
Rosasco, L.2
Lawrence, N.D.3
-
29
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006. (Pubitemid 44708005)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
30
-
-
85161961443
-
Learning bounds for domain adaptation
-
Feb.
-
J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman, "Learning bounds for domain adaptation," Adv. Neural Inf. Process. Syst., vol. 20, pp. 129-136, Feb. 2007.
-
(2007)
Adv. Neural Inf. Process. Syst.
, vol.20
, pp. 129-136
-
-
Blitzer, J.1
Crammer, K.2
Kulesza, A.3
Pereira, F.4
Wortman, J.5
-
31
-
-
70049090801
-
An empirical analysis of domain adaptation algorithms for genomic sequence analysis
-
G. Schweikert, C. Widmer, B. Schölkopf, and G. Rätsch, "An empirical analysis of domain adaptation algorithms for genomic sequence analysis," in Proc. Adv. Neural Inf. Process. Syst., 2009, pp. 1-8.
-
(2009)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1-8
-
-
Schweikert, G.1
Widmer, C.2
Schölkopf, B.3
Rätsch, G.4
-
32
-
-
0000732463
-
A limited memory algorithm for bound constrained optimization
-
R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
-
(1995)
SIAM J. Sci. Comput.
, vol.16
, Issue.5
, pp. 1190-1208
-
-
Byrd, R.H.1
Lu, P.2
Nocedal, J.3
Zhu, C.4
-
34
-
-
84856635207
-
Efficient similarity search for covariance matrices via the Jensen-Bregman logdet divergence
-
Nov.
-
A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos, "Efficient similarity search for covariance matrices via the Jensen-Bregman logdet divergence," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 2399-2406.
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 2399-2406
-
-
Cherian, A.1
Sra, S.2
Banerjee, A.3
Papanikolopoulos, N.4
-
35
-
-
33745827782
-
SURF: Speeded up robust features
-
DOI 10.1007/11744023-32, Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Proceedings
-
H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," in Proc. Eur. Conf. Comput. Vis., 2006, pp. 404-417. (Pubitemid 44029795)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3951
, pp. 404-417
-
-
Bay, H.1
Tuytelaars, T.2
Van Gool, L.3
-
36
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
DOI 10.1023/A:1011139631724
-
A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001. (Pubitemid 32680801)
-
(2001)
International Journal of Computer Vision
, vol.42
, Issue.3
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
37
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
-
(2004)
Int. J. Comput. Vis.
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.G.1
-
38
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
DOI 10.1109/CVPR.2005.177, 1467360, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
-
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 1. Jun. 2005, pp. 886-893. (Pubitemid 43897286)
-
(2005)
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.I
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
|