메뉴 건너뛰기




Volumn 22, Issue 8, 2013, Pages 3108-3119

Cross-domain object recognition via input-output kernel analysis

Author keywords

Domain adaptation; Multiple Kernel Learning; Object Recognition; Output Kernel

Indexed keywords

CROSS-DOMAIN LEARNING; DOMAIN ADAPTATION; FEATURE DISTRIBUTION; IMAGE OBJECT RECOGNITION; MULTIPLE KERNEL LEARNING; OUTPUT KERNEL; REPRODUCING KERNEL HILBERT SPACES; VECTOR-VALUED FUNCTION;

EID: 84879066606     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2013.2259836     Document Type: Article
Times cited : (13)

References (39)
  • 1
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani, "Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1-10.
    • (2010) Proc. Adv. Neural Inf. Process. Syst. , pp. 1-10
    • Bergamo, A.1    Torresani, L.2
  • 3
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • Jun.
    • B. Kulis, K. Saenko, and T. Darrell, "What you saw is not what you get: Domain adaptation using asymmetric kernel transforms," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1785-1792.
    • (2011) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 1785-1792
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 4
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • Nov.
    • R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 999-1006.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 999-1006
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 5
  • 6
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira, "Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification," Annu. Meeting Assoc. Comput. Linguistics, vol. 45, no. 1, p. 440, 2007
    • (2007) Annu. Meeting Assoc. Comput. Linguistics , vol.45 , Issue.1 , pp. 440
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 14
  • 15
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • DOI 10.1162/0899766052530802
    • C. A. Micchelli and M. Pontil, "On learning vector-valued functions," Neural Comput., vol. 17, no. 1, pp. 177-204, 2005. (Pubitemid 40305887)
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 17
    • 33747886323 scopus 로고    scopus 로고
    • Integrating structured biological data by Kernel Maximum Mean Discrepancy
    • DOI 10.1093/bioinformatics/btl242
    • K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola, "Integrating structured biological data by kernel maximum mean discrepancy," Bioinformatics, vol. 22, no. 14, pp. e49-e57, 2006. (Pubitemid 44288272)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Borgwardt, K.M.1    Gretton, A.2    Rasch, M.J.3    Kriegel, H.-P.4    Scholkopf, B.5    Smola, A.J.6
  • 20
    • 84859478057 scopus 로고    scopus 로고
    • Metric and kernel learning using a linear transformation
    • Mar.
    • P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon, "Metric and kernel learning using a linear transformation," J. Mach. Learn. Res., vol. 13, pp. 519-547, Mar. 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 519-547
    • Jain, P.1    Kulis, B.2    Davis, J.V.3    Dhillon, I.S.4
  • 22
    • 68349087851 scopus 로고    scopus 로고
    • Cross-domain learning methods for high-level visual concept classification
    • Oct.
    • W. Jiang, E. Zavesky, S.-F. Chang, and A. Loui, "Cross-domain learning methods for high-level visual concept classification," in Proc. IEEE Int. Conf. Image Process., Oct. 2008, pp. 161-164.
    • (2008) Proc. IEEE Int. Conf. Image Process , pp. 161-164
    • Jiang, W.1    Zavesky, E.2    Chang, S.-F.3    Loui, A.4
  • 25
    • 71149100224 scopus 로고    scopus 로고
    • More generality in efficient multiple kernel learning
    • M. Varma and B. R. Babu, "More generality in efficient multiple kernel learning," in Proc. Int. Conf. Mach. Learn., 2009, pp. 1065-1072.
    • (2009) Proc. Int. Conf. Mach. Learn. , pp. 1065-1072
    • Varma, M.1    Babu, B.R.2
  • 27
    • 48849086653 scopus 로고    scopus 로고
    • Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem
    • C. Carmeli, E. De Vito, and A. Toigo, "Vector valued reproducing kernel hilbert spaces of integrable functions and mercer theorem," Anal. Appl., vol. 4, no. 4, pp. 377-408, 2006.
    • (2006) Anal. Appl. , vol.4 , Issue.4 , pp. 377-408
    • Carmeli, C.1    De Vito, E.2    Toigo, A.3
  • 28
    • 84863534141 scopus 로고    scopus 로고
    • Kernels for vector-valued functions: A review
    • Mar
    • M. A. Alvarez, L. Rosasco, and N. D. Lawrence, "Kernels for vector-valued functions: A review," Found. Trends Mach. Learn., vol. 4, no. 3, pp. 195-266, Mar, 2011.
    • (2011) Found. Trends Mach. Learn. , vol.4 , Issue.3 , pp. 195-266
    • Alvarez, M.A.1    Rosasco, L.2    Lawrence, N.D.3
  • 29
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Nov. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 32
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited memory algorithm for bound constrained optimization," SIAM J. Sci. Comput., vol. 16, no. 5, pp. 1190-1208, 1995.
    • (1995) SIAM J. Sci. Comput. , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 34
    • 84856635207 scopus 로고    scopus 로고
    • Efficient similarity search for covariance matrices via the Jensen-Bregman logdet divergence
    • Nov.
    • A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos, "Efficient similarity search for covariance matrices via the Jensen-Bregman logdet divergence," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 2399-2406.
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 2399-2406
    • Cherian, A.1    Sra, S.2    Banerjee, A.3    Papanikolopoulos, N.4
  • 36
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," Int. J. Comput. Vis., vol. 42, no. 3, pp. 145-175, 2001. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 37
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.