-
1
-
-
84858786424
-
A transductive bound for the voted classifier with an application to semi-supervised learning
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
-
M. Amini, F. Laviolette, and N. Usunier. A transductive bound for the voted classifier with an application to semi-supervised learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21. 2009.
-
(2009)
Advances in Neural Information Processing Systems 21
-
-
Amini, M.1
Laviolette, F.2
Usunier, N.3
-
3
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Comput., 12(10):2385-2404, 2000.
-
(2000)
Neural Comput
, vol.12
, Issue.10
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
4
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
34547994328
-
Discriminative learning for differing training and test distributions
-
Z. Ghahramani, editor, ICML, of, ACM
-
S. Bickel, M. Brĺźckner, and T. Scheffer. Discriminative learning for differing training and test distributions. In Z. Ghahramani, editor, ICML, volume 227 of ACM International Conference Proceeding Series, pages 81-88. ACM, 2007.
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 81-88
-
-
Bickel, S.1
Brĺźckner, M.2
Scheffer, T.3
-
6
-
-
85161961443
-
Learning bounds for domain adaptation
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors
-
J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wortman. Learning bounds for domain adaptation. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. 2008.
-
(2008)
Advances in Neural Information Processing Systems 20
-
-
Blitzer, J.1
Crammer, K.2
Kulesza, A.3
Pereira, F.4
Wortman, J.5
-
7
-
-
0036436325
-
Best choices for regularization parameters in learning theory: On the bias-variance problem
-
F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: On the bias-variance problem. Foundations of Computational Mathematics, 2(4):413-428, 2002.
-
(2002)
Foundations of Computational Mathematics
, vol.2
, Issue.4
, pp. 413-428
-
-
Cucker, F.1
Smale, S.2
-
8
-
-
34547972773
-
Boosting for transfer learning
-
New York, NY, USA, ACM
-
W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 193-200, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th international conference on Machine learning
, pp. 193-200
-
-
Dai, W.1
Yang, Q.2
Xue, G.-R.3
Yu, Y.4
-
9
-
-
8644229403
-
Parameterized generation of labeled datasets for text categorization based on a hierarchical directory
-
Sheffield, UK, ACM Press
-
D. Davidov, E. Gabrilovich, and S. Markovitch. Parameterized generation of labeled datasets for text categorization based on a hierarchical directory. In Proceedings of The 27th Annual International ACM SIGIR Conference, pages 250-257, Sheffield, UK, 2004. ACM Press.
-
(2004)
Proceedings of The 27th Annual International ACM SIGIR Conference
, pp. 250-257
-
-
Davidov, D.1
Gabrilovich, E.2
Markovitch, S.3
-
10
-
-
33750321908
-
When efficient model averaging out-performs boosting and bagging
-
Springer
-
I. Davidson and W. Fan. When efficient model averaging out-performs boosting and bagging. In Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings, pages 478-486. Springer, 2006.
-
(2006)
Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings
, pp. 478-486
-
-
Davidson, I.1
Fan, W.2
-
11
-
-
70449134523
-
On sample selection bias and its efficient correction via model averaging and unlabeled examples
-
Minneapolis, Minnesota, USA, SIAM
-
W. Fan and I. Davidson. On sample selection bias and its efficient correction via model averaging and unlabeled examples. In Proceedings of the Seventh SIAM International Conference on Data Mining, SDM 2007, Minneapolis, Minnesota, USA, 2007. SIAM.
-
(2007)
Proceedings of the Seventh SIAM International Conference on Data Mining, SDM 2007
-
-
Fan, W.1
Davidson, I.2
-
12
-
-
65449181688
-
Knowledge transfer via multiple model local structure mapping
-
Y. Li, B. Liu, and S. Sarawagi, editors, Las Vegas, Nevada, USA, August 24-27, ACM
-
J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local structure mapping. In Y. Li, B. Liu, and S. Sarawagi, editors, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages 283-291. ACM, 2008.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 283-291
-
-
Gao, J.1
Fan, W.2
Jiang, J.3
Han, J.4
-
13
-
-
54249139939
-
Kernel fisher's discriminant analysis in gaussian reproducing kernel hilbert space
-
Technical report, Institute of Statistical Science, Academia Sinica, Taiwan
-
S. Y. Huang and C. R. Hwang. Kernel fisher's discriminant analysis in gaussian reproducing kernel hilbert space. Technical report, Institute of Statistical Science, Academia Sinica, Taiwan, 2005.
-
(2005)
-
-
Huang, S.Y.1
Hwang, C.R.2
-
14
-
-
57749201133
-
Transfer learning via dimensionality reduction
-
Chicago, Illinois, USA, July 13-17, AAAI Press
-
S. J. Pan, J. T. Kwok, and Q. Yang. Transfer learning via dimensionality reduction. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pages 677-682. AAAI Press, 2008.
-
(2008)
Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008
, pp. 677-682
-
-
Pan, S.J.1
Kwok, J.T.2
Yang, Q.3
-
15
-
-
70350633261
-
A survey on transfer learning
-
Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November
-
S. J. Pan and Q. Yang. A survey on transfer learning. Technical Report HKUST-CS08-08, Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong, China, November 2008.
-
(2008)
-
-
Pan, S.J.1
Yang, Q.2
-
16
-
-
52649174887
-
Type-independent correction of sample selection bias via structural discovery and re-balancing
-
Atlanta, Georgia, USA, SIAM
-
J. Ren, X. Shi, W. Fan, and P. S. Yu. Type-independent correction of sample selection bias via structural discovery and re-balancing. In Proceedings of the Eighth SIAM International Conference on Data Mining, SDM 2008, pages 565-576, Atlanta, Georgia, USA, 2008. SIAM.
-
(2008)
Proceedings of the Eighth SIAM International Conference on Data Mining, SDM
, pp. 565-576
-
-
Ren, J.1
Shi, X.2
Fan, W.3
Yu, P.S.4
-
17
-
-
56049099339
-
Kernel-based inductive transfer
-
U. Rückert and S. Kramer. Kernel-based inductive transfer. In Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II, pages 220-233, 2008.
-
(2008)
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II
, pp. 220-233
-
-
Rückert, U.1
Kramer, S.2
-
18
-
-
38049120269
-
Domain adaptation of conditional probability models via feature subsetting
-
J. N. Kok, J. Koronacki, R. L. de Mĺćntaras, S. Matwin, D. Mladenic, and A. Skowron, editors, PKDD, of, Springer
-
S. Satpal and S. Sarawagi. Domain adaptation of conditional probability models via feature subsetting. In J. N. Kok, J. Koronacki, R. L. de Mĺćntaras, S. Matwin, D. Mladenic, and A. Skowron, editors, PKDD, volume 4702 of Lecture Notes in Computer Science, pages 224-235. Springer, 2007.
-
(2007)
Lecture Notes in Computer Science
, vol.4702
, pp. 224-235
-
-
Satpal, S.1
Sarawagi, S.2
-
19
-
-
84865131152
-
A generalized representer theorem
-
London, UK, Springer-Verlag
-
B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In COLT '01/EuroCOLT '01: Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory, pages 416-426, London, UK, 2001. Springer-Verlag.
-
(2001)
COLT '01/EuroCOLT '01: Proceedings of the 14th Annual Conference on Computational Learning Theory and and 5th European Conference on Computational Learning Theory
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
20
-
-
56049117915
-
Transferred dimensionality reduction
-
Z. Wang, Y. Song, and C. Zhang. Transferred dimensionality reduction. In Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II, pages 550-565, 2008.
-
(2008)
Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II
, pp. 550-565
-
-
Wang, Z.1
Song, Y.2
Zhang, C.3
-
21
-
-
0003957032
-
Data Mining: Practical Machine Learning Tools and Techniques
-
Second Edition , Morgan Kaufmann, June
-
I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann, June 2005.
-
(2005)
Morgan Kaufmann Series in Data Management Systems
-
-
Witten, I.H.1
Frank, E.2
-
22
-
-
34547980509
-
Asymptotic bayesian generalization error when training and test distributions are different
-
New York, NY, USA, ACM
-
K. Yamazaki, M. Kawanabe, S. Watanabe, M. Sugiyama, and K.-R. Müller. Asymptotic bayesian generalization error when training and test distributions are different. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 1079-1086, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th international conference on Machine learning
, pp. 1079-1086
-
-
Yamazaki, K.1
Kawanabe, M.2
Watanabe, S.3
Sugiyama, M.4
Müller, K.-R.5
-
23
-
-
34548588868
-
Discriminant analysis: A unified approach
-
Washington, DC, USA, IEEE Computer Society
-
P. Zhang, J. Peng, and N. Riedel. Discriminant analysis: A unified approach. In ICDM '05: Proceedings of the Fifth IEEE International Conference on Data Mining, pages 514-521, Washington, DC, USA, 2005. IEEE Computer Society.
-
(2005)
ICDM '05: Proceedings of the Fifth IEEE International Conference on Data Mining
, pp. 514-521
-
-
Zhang, P.1
Peng, J.2
Riedel, N.3
-
24
-
-
33744955193
-
-
PhD thesis, Dept. of Computer Science, University of Carnegie Mellon
-
X. Zhu. Semi-supervised learning with graphs. PhD thesis, Dept. of Computer Science, University of Carnegie Mellon, 2005.
-
(2005)
Semi-supervised learning with graphs
-
-
Zhu, X.1
|