메뉴 건너뛰기




Volumn , Issue , 2012, Pages 2168-2175

Robust visual domain adaptation with low-rank reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTATION PROCESS; DATA DISTRIBUTION; DOMAIN ADAPTATION; DOMAIN DISTRIBUTION; INTERMEDIATE REPRESENTATIONS; RECONSTRUCTION METHOD; SAMPLE DISTRIBUTIONS; TARGET DOMAIN; VISUAL ADAPTATION;

EID: 84866651199     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247924     Document Type: Conference Paper
Times cited : (315)

References (27)
  • 1
    • 85161959507 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification:A domain adaptation approach
    • 2, 7
    • A. Bergamo, and L. Torresani. Exploiting weakly-labeled web images to improve object classification:A domain adaptation approach. In NIPS'10. 2, 7
    • NIPS'10
    • Bergamo, A.1    Torresani, L.2
  • 2
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • 3
    • E. Candes, and B. Recht. Exact matrix completion via convex optimization. In FCM'09, 9(6):717-772. 3
    • FCM'09 , vol.9 , Issue.6 , pp. 717-772
    • Candes, E.1    Recht, B.2
  • 3
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • 3
    • E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?. In J. of ACM'11, 58(3):11:1-11:37. 3
    • J. of ACM' 11 , vol.58 , Issue.3 , pp. 1101-1137
    • Candes, E.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 4
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • 5
    • J.-F. Cai, E. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. In J. Optimization, SAIM'10, 20(4):1956-1982. 5
    • J. Optimization, SAIM'10 , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.-F.1    Candes, E.2    Shen, Z.3
  • 5
    • 0031189914 scopus 로고    scopus 로고
    • Multi-task learning
    • 3
    • R. Caruana. Multi-task learning. Machine Learning'97, 28(1):41-75. 3
    • Machine Learning'97 , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 6
    • 85147402302 scopus 로고    scopus 로고
    • Integrating low-rank and group-sparse structures for robust multi-task learning
    • 3
    • J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In KDD'11. 3
    • KDD'11
    • Chen, J.1    Zhou, J.2    Ye, J.3
  • 7
    • 85057277997 scopus 로고    scopus 로고
    • Translated learning: Transfer learning across different feature spaces
    • 2
    • W. Dai, Y. Chen, G. Xue, Q. Yang, and Y. Yu. Translated learning: transfer learning across different feature spaces. In NIPS'08. 2
    • NIPS'08
    • Dai, W.1    Chen, Y.2    Xue, G.3    Yang, Q.4    Yu, Y.5
  • 8
    • 33749028480 scopus 로고    scopus 로고
    • Domain adaptation for statistical classifiers
    • 2
    • H. DamueIII, and D. Marcu. Domain adaptation for statistical classifiers. In JAIR'06, 26(1):101-126. 2
    • JAIR'06 , vol.26 , Issue.1 , pp. 101-126
    • Damueiii, H.1    Marcu, D.2
  • 9
    • 84860513476 scopus 로고    scopus 로고
    • Frustratingly easy domain adaptation
    • 1, 2
    • H. Daume III. Frustratingly easy domain adaptation. In ACL'07. 1, 2
    • ACL'07
    • Daume Iii, H.1
  • 11
    • 85047052438 scopus 로고    scopus 로고
    • Domain transfer SVM for video concept detection
    • 2, 3
    • L. Duan, I. Tsang, D. Xu, and S. Maybank. Domain transfer SVM for video concept detection. In CVPR'09. 2, 3
    • CVPR'09
    • Duan, L.1    Tsang, I.2    Xu, D.3    Maybank, S.4
  • 12
    • 77956003629 scopus 로고    scopus 로고
    • Visual event recognition in videos by learning from web data
    • 1, 2
    • L. Duan, D. Xu, I. Tsan, and J. Luo. Visual event recognition in videos by learning from web data. In CVPR'10. 1, 2
    • CVPR'10
    • Duan, L.1    Xu, D.2    Tsan, I.3    Luo, J.4
  • 13
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • 1, 2, 5, 6, 7
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV'11. 1, 2, 5, 6, 7
    • ICCV'11
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 14
    • 68349087851 scopus 로고    scopus 로고
    • Cross-domain learning methods for high-level visual concept classification
    • 1, 2, 3
    • W. Jiang, E. Zavesky, S.-F. Chang, and A. Loui. Cross-domain learning methods for high-level visual concept classification. In ICIP'08. 1, 2, 3
    • ICIP'08
    • Jiang, W.1    Zavesky, E.2    Chang, S.-F.3    Loui, A.4
  • 15
    • 80052895155 scopus 로고    scopus 로고
    • What you saw is not what you get: Domain adaptation using asymmetric kernel transforms
    • 1, 2
    • B. Kulis, K. Saenko, and T. Darrell. What you saw is not what you get: domain adaptation using asymmetric kernel transforms. In CVPR'11. 1, 2
    • CVPR'11
    • Kulis, B.1    Saenko, K.2    Darrell, T.3
  • 16
    • 77955690054 scopus 로고    scopus 로고
    • The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
    • 2, 4
    • Z. Lin, M. Chen, L.Wu, and Y. Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. In UIUC Technical Report' 09. 2, 4
    • UIUC Technical Report'09
    • Lin, Z.1    Chen, M.2    Wu, L.3    Ma, Y.4
  • 17
    • 85097310519 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l2,1-norm minimization
    • 5
    • J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l2,1-norm minimization. In UAI'09. 5
    • UAI'09
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 18
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • 3
    • G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML'10. 3
    • ICML'10
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 19
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 7
    • D. Lowe. Distinctive image features from scale-invariant keypoints. In IJCV'04, 60(2), 91-110. 7
    • IJCV'04 , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 20
    • 9644260534 scopus 로고    scopus 로고
    • Scale and affine invariant interest point detectors
    • 8
    • K. Mikolajczyk, and C. Schmid. Scale and affine invariant interest point detectors. In IJCV'04, 60(1):63-86. 8
    • IJCV'04 , vol.60 , Issue.1 , pp. 63-86
    • Mikolajczyk, K.1    Schmid, C.2
  • 21
    • 80052906503 scopus 로고    scopus 로고
    • Adapting visual category models to new Domains
    • 1, 2, 3, 5, 6
    • K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new Domains. In ECCV'10. 1, 2, 3, 5, 6
    • ECCV'10
    • Saenko, K.1    Kulis, B.2    Fritz, M.3    Darrell, T.4
  • 23
    • 84857193005 scopus 로고    scopus 로고
    • A feasible method for optimization with orthogonality constraints
    • 4
    • Z. Wen, and W. Yin. A feasible method for optimization with orthogonality constraints. In Rice Univ. Technical Report'10. 4
    • Rice Univ. Technical Report'10
    • Wen, Z.1    Yin, W.2
  • 24
    • 84866712217 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization
    • 3
    • J. Wright, A. Ganesh, S. Rao, and Y. Ma. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In NIPS'09. 3
    • NIPS'09
    • Wright, J.1    Ganesh, A.2    Rao, S.3    Ma, Y.4
  • 25
    • 84866636983 scopus 로고    scopus 로고
    • Cross-domain video concept detection using adaptive SVMs
    • 2, 5
    • J. Yang, R. Yan, and A. Hauptmann. Cross-domain video concept detection using adaptive SVMs. In ACM MM'07. 2, 5
    • ACM MM'07
    • Yang, J.1    Yan, R.2    Hauptmann, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.