메뉴 건너뛰기




Volumn , Issue , 2007, Pages 188-197

Cross-domain video concept detection using adaptive svms

Author keywords

Adaptive SVMs; Classifier adaptation; Cross domain video concept detection

Indexed keywords

ADAPTIVE SVM; CROSS-DOMAIN VIDEO CONCEPT DETECTION; META FEATURES;

EID: 37849026107     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1291233.1291276     Document Type: Conference Paper
Times cited : (597)

References (19)
  • 2
    • 22544443981 scopus 로고    scopus 로고
    • A case-based technique for tracking concept drift in spam filtering
    • S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle. A case-based technique for tracking concept drift in spam filtering. Knowledge-Based Systems, 18(4-5):187-195, 2005.
    • (2005) Knowledge-Based Systems , vol.18 , Issue.4-5 , pp. 187-195
    • Delany, S.J.1    Cunningham, P.2    Tsymbal, A.3    Coyle, L.4
  • 3
    • 36849085444 scopus 로고    scopus 로고
    • Probabilistic model supported rank aggregation for the semantic concept detection in video
    • D. Ding and B. Zhang. Probabilistic model supported rank aggregation for the semantic concept detection in video. In Proc. of ACM Int'l Conf. on Image and Video Retrieval, 2007.
    • (2007) Proc. of ACM Int'l Conf. on Image and Video Retrieval
    • Ding, D.1    Zhang, B.2
  • 7
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: A new ensemble method for tracking concept drift. In Proc. of 3rd IEEE Int'l Conf. on Data Mining, page 123, 2003.
    • (2003) Proc. of 3rd IEEE Int'l Conf. on Data Mining , pp. 123
    • Kolter, J.Z.1    Maloof, M.A.2
  • 8
    • 31844444368 scopus 로고    scopus 로고
    • Logistic regression with an auxiliary data source
    • New York, NY, USA, ACM Press
    • X. Liao, Y. Xue, and L. Carin. Logistic regression with an auxiliary data source. In Proc. of the 22nd Int'l Conf. on Machine learning, pages 505-512, New York, NY, USA, 2005. ACM Press.
    • (2005) Proc. of the 22nd Int'l Conf. on Machine learning , pp. 505-512
    • Liao, X.1    Xue, Y.2    Carin, L.3
  • 12
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Piatt. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning, pages 185-208, 1999.
    • (1999) Advances in kernel methods: Support vector learning , pp. 185-208
    • Piatt, J.1
  • 14
    • 34547172608 scopus 로고    scopus 로고
    • C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and A. W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In Prof, of 14th Annual ACM Int'l Conf. Multimedia, pages 421-430, 2006.
    • C. G. M. Snoek, M. Worring, J. C. van Gemert, J.-M. Geusebroek, and A. W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In Prof, of 14th Annual ACM Int'l Conf. Multimedia, pages 421-430, 2006.
  • 15
    • 37849044794 scopus 로고    scopus 로고
    • N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines. In In Proc. of the Workshop on Support Vector Machines, at the Int'l Joint Conf. on Articial Intelligence, 1999.
    • N. Syed, H. Liu, and K. Sung. Incremental learning with support vector machines. In In Proc. of the Workshop on Support Vector Machines, at the Int'l Joint Conf. on Articial Intelligence, 1999.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.