메뉴 건너뛰기




Volumn 38, Issue 6, 2013, Pages 283-291

Accessorizing the human mitochondrial transcription machinery

Author keywords

Human mitochondria; RNA polymerase; Transcription factor; Transcription factor A, mitochondrial; Transcriptional regulation

Indexed keywords

LEUCINE RICH PENTATRICOPEPTIDE REPEAT CONTAINING PROTEIN; MESSENGER RNA; MITOCHONDRIAL DNA; MITOCHONDRIAL ENZYME; MITOCHONDRIAL PROTEIN; MITOCHONDRIAL TRANSCRIPTION FACTOR A; PROTEIN MRPL12; PROTEIN MTERF; PROTEIN POLRMT; PROTEIN TFB2M; RIBOSOME PROTEIN; RIBOSOME RNA; RNA POLYMERASE; TRANSCRIPTION ELONGATION FACTOR; TRANSCRIPTION FACTOR; TRANSFER RNA; UNCLASSIFIED DRUG;

EID: 84878147112     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.03.006     Document Type: Review
Times cited : (62)

References (84)
  • 1
    • 33845744837 scopus 로고    scopus 로고
    • Initiation and beyond: multiple functions of the human mitochondrial transcription machinery
    • Bonawitz N.D., et al. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol. Cell 2006, 24:813-825.
    • (2006) Mol. Cell , vol.24 , pp. 813-825
    • Bonawitz, N.D.1
  • 2
    • 84858004499 scopus 로고    scopus 로고
    • Mitochondrial protein import: from transport pathways to an integrated network
    • Becker T., et al. Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem. Sci. 2012, 37:85-91.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 85-91
    • Becker, T.1
  • 3
    • 77953529585 scopus 로고    scopus 로고
    • A compendium of human mitochondrial gene expression machinery with links to disease
    • Shutt T.E., Shadel G.S. A compendium of human mitochondrial gene expression machinery with links to disease. Environ. Mol. Mutagen 2010, 51:360-379.
    • (2010) Environ. Mol. Mutagen , vol.51 , pp. 360-379
    • Shutt, T.E.1    Shadel, G.S.2
  • 4
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 5
    • 0030920779 scopus 로고    scopus 로고
    • Mitochondrial DNA maintenance in vertebrates
    • Shadel G.S., Clayton D.A. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 1997, 66:409-435.
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 409-435
    • Shadel, G.S.1    Clayton, D.A.2
  • 6
    • 0020608833 scopus 로고
    • The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units
    • Montoya J., et al. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 1983, 34:151-159.
    • (1983) Cell , vol.34 , pp. 151-159
    • Montoya, J.1
  • 7
    • 0019444843 scopus 로고
    • TRNA punctuation model of RNA processing in human mitochondria
    • Ojala D., et al. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290:470-474.
    • (1981) Nature , vol.290 , pp. 470-474
    • Ojala, D.1
  • 8
    • 77953811054 scopus 로고    scopus 로고
    • The human mitochondrial replication fork in health and disease
    • Wanrooij S., Falkenberg M. The human mitochondrial replication fork in health and disease. Biochim. Biophys. Acta 2010, 1797:1378-1388.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1378-1388
    • Wanrooij, S.1    Falkenberg, M.2
  • 9
    • 0027166054 scopus 로고
    • Mitochondrial transcription initiation. Variation and conservation
    • Shadel G.S., Clayton D.A. Mitochondrial transcription initiation. Variation and conservation. J. Biol. Chem. 1993, 268:16083-16086.
    • (1993) J. Biol. Chem. , vol.268 , pp. 16083-16086
    • Shadel, G.S.1    Clayton, D.A.2
  • 10
    • 84860207612 scopus 로고    scopus 로고
    • Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro
    • Lodeiro M.F., et al. Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6513-6518.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6513-6518
    • Lodeiro, M.F.1
  • 11
    • 84860211886 scopus 로고    scopus 로고
    • Transcriptional requirements of the distal heavy-strand promoter of mtDNA
    • Zollo O., et al. Transcriptional requirements of the distal heavy-strand promoter of mtDNA. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6508-6512.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6508-6512
    • Zollo, O.1
  • 12
    • 77955456575 scopus 로고    scopus 로고
    • Core human mitochondrial transcription apparatus is a regulated two-component system in vitro
    • Shutt T.E., et al. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:12133-12138.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 12133-12138
    • Shutt, T.E.1
  • 13
    • 84867346110 scopus 로고    scopus 로고
    • Mammalian transcription factor A is a core component of the mitochondrial transcription machinery
    • Shi Y., et al. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:16510-16515.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 16510-16515
    • Shi, Y.1
  • 14
    • 77953319998 scopus 로고    scopus 로고
    • Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro
    • Litonin D., et al. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J. Biol. Chem. 2010, 285:18129-18133.
    • (2010) J. Biol. Chem. , vol.285 , pp. 18129-18133
    • Litonin, D.1
  • 15
    • 0036648997 scopus 로고    scopus 로고
    • Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA
    • Falkenberg M., et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 2002, 31:289-294.
    • (2002) Nat. Genet. , vol.31 , pp. 289-294
    • Falkenberg, M.1
  • 16
    • 0030943170 scopus 로고    scopus 로고
    • Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database
    • Tiranti V., et al. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum. Mol. Genet. 1997, 6:615-625.
    • (1997) Hum. Mol. Genet. , vol.6 , pp. 615-625
    • Tiranti, V.1
  • 17
    • 0023649273 scopus 로고
    • Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7
    • Masters B.S., et al. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 1987, 51:89-99.
    • (1987) Cell , vol.51 , pp. 89-99
    • Masters, B.S.1
  • 18
    • 77952329046 scopus 로고    scopus 로고
    • Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro
    • Lodeiro M.F., et al. Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro. J. Biol. Chem. 2010, 285:16387-16402.
    • (2010) J. Biol. Chem. , vol.285 , pp. 16387-16402
    • Lodeiro, M.F.1
  • 19
    • 70449807055 scopus 로고    scopus 로고
    • TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase
    • Sologub M., et al. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 2009, 139:934-944.
    • (2009) Cell , vol.139 , pp. 934-944
    • Sologub, M.1
  • 20
    • 10644229290 scopus 로고    scopus 로고
    • The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells
    • Gaspari M., et al. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 2004, 23:4606-4614.
    • (2004) EMBO J. , vol.23 , pp. 4606-4614
    • Gaspari, M.1
  • 21
    • 0038054465 scopus 로고    scopus 로고
    • Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis
    • Kato M., et al. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Mol. Cell 2003, 11:1349-1360.
    • (2003) Mol. Cell , vol.11 , pp. 1349-1360
    • Kato, M.1
  • 22
    • 74049123624 scopus 로고    scopus 로고
    • Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication
    • Fuste J.M., et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol. Cell 2010, 37:67-78.
    • (2010) Mol. Cell , vol.37 , pp. 67-78
    • Fuste, J.M.1
  • 23
    • 0007662353 scopus 로고
    • Priming of human mitochondrial DNA replication occurs at the light-strand promoter
    • Chang D.D., Clayton D.A. Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc. Natl. Acad. Sci. U.S.A. 1985, 82:351-355.
    • (1985) Proc. Natl. Acad. Sci. U.S.A. , vol.82 , pp. 351-355
    • Chang, D.D.1    Clayton, D.A.2
  • 24
    • 67649948823 scopus 로고    scopus 로고
    • Mitochondrial DNA replication and repair: all a flap
    • Holt I.J. Mitochondrial DNA replication and repair: all a flap. Trends Biochem. Sci. 2009, 34:358-365.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 358-365
    • Holt, I.J.1
  • 25
    • 0022230199 scopus 로고
    • In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis
    • Wong T.W., Clayton D.A. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell 1985, 42:951-958.
    • (1985) Cell , vol.42 , pp. 951-958
    • Wong, T.W.1    Clayton, D.A.2
  • 26
    • 80054015954 scopus 로고    scopus 로고
    • Structure of human mitochondrial RNA polymerase
    • Ringel R., et al. Structure of human mitochondrial RNA polymerase. Nature 2011, 478:269-273.
    • (2011) Nature , vol.478 , pp. 269-273
    • Ringel, R.1
  • 27
    • 79958053065 scopus 로고    scopus 로고
    • Human mitochondrial RNA polymerase: evaluation of the single-nucleotide-addition cycle on synthetic RNA/DNA scaffolds
    • Smidansky E.D., et al. Human mitochondrial RNA polymerase: evaluation of the single-nucleotide-addition cycle on synthetic RNA/DNA scaffolds. Biochemistry 2011, 50:5016-5032.
    • (2011) Biochemistry , vol.50 , pp. 5016-5032
    • Smidansky, E.D.1
  • 28
    • 4444268726 scopus 로고    scopus 로고
    • Coupling the mitochondrial transcription machinery to human disease
    • Shadel G.S. Coupling the mitochondrial transcription machinery to human disease. Trends Genet. 2004, 20:513-519.
    • (2004) Trends Genet. , vol.20 , pp. 513-519
    • Shadel, G.S.1
  • 29
    • 84876352344 scopus 로고    scopus 로고
    • Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis
    • Surovtseva Y.V., Shadel G.S. Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis. Nucleic Acids Res. 2013, 41:2479-2488.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 2479-2488
    • Surovtseva, Y.V.1    Shadel, G.S.2
  • 30
    • 33751521683 scopus 로고    scopus 로고
    • Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2
    • Cotney J., Shadel G.S. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J. Mol. Evol. 2006, 63:707-717.
    • (2006) J. Mol. Evol. , vol.63 , pp. 707-717
    • Cotney, J.1    Shadel, G.S.2
  • 31
    • 0037228525 scopus 로고    scopus 로고
    • Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop
    • Seidel-Rogol B.L., et al. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat. Genet. 2003, 33:23-24.
    • (2003) Nat. Genet. , vol.33 , pp. 23-24
    • Seidel-Rogol, B.L.1
  • 32
    • 0036148610 scopus 로고    scopus 로고
    • A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine
    • McCulloch V., et al. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell. Biol. 2002, 22:1116-1125.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1116-1125
    • McCulloch, V.1
  • 33
    • 63449105579 scopus 로고    scopus 로고
    • Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome
    • Metodiev M.D., et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 2009, 9:386-397.
    • (2009) Cell Metab. , vol.9 , pp. 386-397
    • Metodiev, M.D.1
  • 34
    • 67649876629 scopus 로고    scopus 로고
    • Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness
    • Cotney J., et al. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum. Mol. Genet. 2009, 18:2670-2682.
    • (2009) Hum. Mol. Genet. , vol.18 , pp. 2670-2682
    • Cotney, J.1
  • 35
    • 0022212873 scopus 로고
    • A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro
    • Fisher R.P., Clayton D.A. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J. Biol. Chem. 1985, 260:11330-11338.
    • (1985) J. Biol. Chem. , vol.260 , pp. 11330-11338
    • Fisher, R.P.1    Clayton, D.A.2
  • 36
    • 0025829045 scopus 로고
    • Similarity of human mitochondrial transcription factor 1 to high mobility group proteins
    • Parisi M.A., Clayton D.A. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 1991, 252:965-969.
    • (1991) Science , vol.252 , pp. 965-969
    • Parisi, M.A.1    Clayton, D.A.2
  • 37
    • 0026640728 scopus 로고
    • DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein
    • Fisher R.P., et al. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J. Biol. Chem. 1992, 267:3358-3367.
    • (1992) J. Biol. Chem. , vol.267 , pp. 3358-3367
    • Fisher, R.P.1
  • 38
    • 0029070402 scopus 로고
    • Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator
    • Dairaghi D.J., et al. Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 1995, 249:11-28.
    • (1995) J. Mol. Biol. , vol.249 , pp. 11-28
    • Dairaghi, D.J.1
  • 39
    • 84866082674 scopus 로고    scopus 로고
    • Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A
    • Farge G., et al. Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor A. Nat. Commun. 2012, 3:1013.
    • (2012) Nat. Commun. , vol.3 , pp. 1013
    • Farge, G.1
  • 40
    • 84855882963 scopus 로고    scopus 로고
    • Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA
    • Malarkey C.S., et al. Transcriptional activation by mitochondrial transcription factor A involves preferential distortion of promoter DNA. Nucleic Acids Res. 2012, 40:614-624.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 614-624
    • Malarkey, C.S.1
  • 41
    • 80555128721 scopus 로고    scopus 로고
    • The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA
    • Ngo H.B., et al. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat. Struct. Mol. Biol. 2011, 18:1290-1296.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1290-1296
    • Ngo, H.B.1
  • 42
    • 34548495323 scopus 로고    scopus 로고
    • The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures
    • Kaufman B.A., et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell 2007, 18:3225-3236.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3225-3236
    • Kaufman, B.A.1
  • 43
    • 84864308607 scopus 로고    scopus 로고
    • Mitochondrial DNA nucleoid structure
    • Bogenhagen D.F. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 2012, 1819:914-920.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 914-920
    • Bogenhagen, D.F.1
  • 44
    • 80555122761 scopus 로고    scopus 로고
    • Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter
    • Rubio-Cosials A., et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat. Struct. Mol. Biol. 2011, 18:1281-1289.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1281-1289
    • Rubio-Cosials, A.1
  • 45
    • 0042632864 scopus 로고    scopus 로고
    • Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity
    • McCulloch V., Shadel G.S. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol. Cell. Biol. 2003, 23:5816-5824.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5816-5824
    • McCulloch, V.1    Shadel, G.S.2
  • 46
    • 84872271398 scopus 로고    scopus 로고
    • Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA(+) Lon protease
    • Lu B., et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA(+) Lon protease. Mol. Cell 2012, 49:121-132.
    • (2012) Mol. Cell , vol.49 , pp. 121-132
    • Lu, B.1
  • 47
    • 78649842154 scopus 로고    scopus 로고
    • Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM)
    • Matsushima Y., et al. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc. Natl. Acad. Sci. U.S.A. 2010, 107:18410-18415.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 18410-18415
    • Matsushima, Y.1
  • 48
    • 84872276165 scopus 로고    scopus 로고
    • Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome
    • Hebert A.S., et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell 2013, 49:186-199.
    • (2013) Mol. Cell , vol.49 , pp. 186-199
    • Hebert, A.S.1
  • 49
    • 0023658329 scopus 로고
    • Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements
    • Fisher R.P., et al. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 1987, 50:247-258.
    • (1987) Cell , vol.50 , pp. 247-258
    • Fisher, R.P.1
  • 50
    • 29244468548 scopus 로고    scopus 로고
    • Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis
    • Martin M., et al. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 2005, 123:1227-1240.
    • (2005) Cell , vol.123 , pp. 1227-1240
    • Martin, M.1
  • 51
    • 0024365289 scopus 로고
    • Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination
    • Kruse B., et al. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 1989, 58:391-397.
    • (1989) Cell , vol.58 , pp. 391-397
    • Kruse, B.1
  • 52
    • 79952461851 scopus 로고    scopus 로고
    • The core human mitochondrial transcription initiation complex: It only takes two to tango
    • Shutt T.E., et al. The core human mitochondrial transcription initiation complex: It only takes two to tango. Transcription 2011, 2:55-59.
    • (2011) Transcription , vol.2 , pp. 55-59
    • Shutt, T.E.1
  • 53
    • 65449130464 scopus 로고    scopus 로고
    • The MTERF family proteins: mitochondrial transcription regulators and beyond
    • Roberti M., et al. The MTERF family proteins: mitochondrial transcription regulators and beyond. Biochim. Biophys. Acta 2009, 1787:303-311.
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 303-311
    • Roberti, M.1
  • 54
    • 77953699733 scopus 로고    scopus 로고
    • Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription
    • Yakubovskaya E., et al. Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 2010, 141:982-993.
    • (2010) Cell , vol.141 , pp. 982-993
    • Yakubovskaya, E.1
  • 55
    • 77954385327 scopus 로고    scopus 로고
    • Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat
    • Jimenez-Menendez N., et al. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat. Struct. Mol. Biol. 2010, 17:891-893.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 891-893
    • Jimenez-Menendez, N.1
  • 56
    • 84875887074 scopus 로고    scopus 로고
    • MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation
    • Terzioglu M., et al. MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab. 2013, 17:618-626.
    • (2013) Cell Metab. , vol.17 , pp. 618-626
    • Terzioglu, M.1
  • 57
    • 66049104206 scopus 로고    scopus 로고
    • MTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription
    • Wenz T., et al. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab. 2009, 9:499-511.
    • (2009) Cell Metab. , vol.9 , pp. 499-511
    • Wenz, T.1
  • 58
    • 65449161792 scopus 로고    scopus 로고
    • MTERF2 is a nucleoid component in mammalian mitochondria
    • Pellegrini M., et al. MTERF2 is a nucleoid component in mammalian mitochondria. Biochim. Biophys. Acta 2009, 1787:296-302.
    • (2009) Biochim. Biophys. Acta , vol.1787 , pp. 296-302
    • Pellegrini, M.1
  • 59
    • 34447539564 scopus 로고    scopus 로고
    • MTERF3 is a negative regulator of mammalian mtDNA transcription
    • Park C.B., et al. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell 2007, 130:273-285.
    • (2007) Cell , vol.130 , pp. 273-285
    • Park, C.B.1
  • 60
    • 79951581724 scopus 로고    scopus 로고
    • Overexpression of MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA replication
    • Hyvarinen A.K., et al. Overexpression of MTERFD1 or MTERFD3 impairs the completion of mitochondrial DNA replication. Mol. Biol. Rep. 2011, 38:1321-1328.
    • (2011) Mol. Biol. Rep. , vol.38 , pp. 1321-1328
    • Hyvarinen, A.K.1
  • 61
    • 79955633747 scopus 로고    scopus 로고
    • MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome
    • Camara Y., et al. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab. 2011, 13:527-539.
    • (2011) Cell Metab. , vol.13 , pp. 527-539
    • Camara, Y.1
  • 62
    • 84869822219 scopus 로고    scopus 로고
    • LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria
    • Chujo T., et al. LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res. 2012, 40:8033-8047.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8033-8047
    • Chujo, T.1
  • 63
    • 84857192195 scopus 로고    scopus 로고
    • LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs
    • Ruzzenente B., et al. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 2012, 31:443-456.
    • (2012) EMBO J. , vol.31 , pp. 443-456
    • Ruzzenente, B.1
  • 64
    • 82355171887 scopus 로고    scopus 로고
    • LRP130 protein remodels mitochondria and stimulates fatty acid oxidation
    • Liu L., et al. LRP130 protein remodels mitochondria and stimulates fatty acid oxidation. J. Biol. Chem. 2011, 286:41253-41264.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41253-41264
    • Liu, L.1
  • 65
    • 77950901962 scopus 로고    scopus 로고
    • LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria
    • Sasarman F., et al. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol. Biol. Cell 2010, 21:1315-1323.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 1315-1323
    • Sasarman, F.1
  • 66
    • 4344595430 scopus 로고    scopus 로고
    • The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA
    • Xu F., et al. The role of the LRPPRC (leucine-rich pentatricopeptide repeat cassette) gene in cytochrome oxidase assembly: mutation causes lowered levels of COX (cytochrome c oxidase) I and COX III mRNA. Biochem. J. 2004, 382:331-336.
    • (2004) Biochem. J. , vol.382 , pp. 331-336
    • Xu, F.1
  • 67
    • 0037774459 scopus 로고    scopus 로고
    • LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs
    • Mili S., Pinol-Roma S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol. Cell. Biol. 2003, 23:4972-4982.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 4972-4982
    • Mili, S.1    Pinol-Roma, S.2
  • 68
    • 0037458031 scopus 로고    scopus 로고
    • Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics
    • Mootha V.K., et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:605-610.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 605-610
    • Mootha, V.K.1
  • 69
    • 77955420680 scopus 로고    scopus 로고
    • LRPPRC is a mitochondrial matrix protein that is conserved in metazoans
    • Sterky F.H., et al. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans. Biochem. Biophys. Res. Commun. 2010, 398:759-764.
    • (2010) Biochem. Biophys. Res. Commun. , vol.398 , pp. 759-764
    • Sterky, F.H.1
  • 70
    • 79951810965 scopus 로고    scopus 로고
    • LRPPRC mutations cause a phenotypically distinct form of Leigh syndrome with cytochrome c oxidase deficiency
    • Debray F.G., et al. LRPPRC mutations cause a phenotypically distinct form of Leigh syndrome with cytochrome c oxidase deficiency. J. Med. Genet. 2011, 48:183-189.
    • (2011) J. Med. Genet. , vol.48 , pp. 183-189
    • Debray, F.G.1
  • 71
    • 84055213668 scopus 로고    scopus 로고
    • LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model
    • Xu F., et al. LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model. Biochem. J. 2012, 441:275-283.
    • (2012) Biochem. J. , vol.441 , pp. 275-283
    • Xu, F.1
  • 72
    • 77956136985 scopus 로고    scopus 로고
    • Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription
    • Sondheimer N., et al. Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription. Biochemistry 2010, 49:7467-7473.
    • (2010) Biochemistry , vol.49 , pp. 7467-7473
    • Sondheimer, N.1
  • 73
    • 81055126308 scopus 로고    scopus 로고
    • Mitochondrial ribosomal protein L12 selectively associates with human mitochondrial RNA polymerase to activate transcription
    • Surovtseva Y.V., et al. Mitochondrial ribosomal protein L12 selectively associates with human mitochondrial RNA polymerase to activate transcription. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:17921-17926.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 17921-17926
    • Surovtseva, Y.V.1
  • 74
    • 34250376484 scopus 로고    scopus 로고
    • Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression
    • Wang Z., et al. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J. Biol. Chem. 2007, 282:12610-12618.
    • (2007) J. Biol. Chem. , vol.282 , pp. 12610-12618
    • Wang, Z.1
  • 75
    • 15844394108 scopus 로고    scopus 로고
    • A delayed-early response nuclear gene encoding MRPL12, the mitochondrial homologue to the bacterial translational regulator L7/L12 protein
    • Marty L., Fort P. A delayed-early response nuclear gene encoding MRPL12, the mitochondrial homologue to the bacterial translational regulator L7/L12 protein. J. Biol. Chem. 1996, 271:11468-11476.
    • (1996) J. Biol. Chem. , vol.271 , pp. 11468-11476
    • Marty, L.1    Fort, P.2
  • 76
    • 14844315660 scopus 로고    scopus 로고
    • The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth
    • Frei C., et al. The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO J. 2005, 24:623-634.
    • (2005) EMBO J. , vol.24 , pp. 623-634
    • Frei, C.1
  • 77
    • 79958055322 scopus 로고    scopus 로고
    • TEFM (c17orf42) is necessary for transcription of human mtDNA
    • Minczuk M., et al. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 2011, 39:4284-4299.
    • (2011) Nucleic Acids Res. , vol.39 , pp. 4284-4299
    • Minczuk, M.1
  • 78
    • 79952749156 scopus 로고    scopus 로고
    • DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria
    • Shock L.S., et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3630-3635.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3630-3635
    • Shock, L.S.1
  • 79
    • 84864293617 scopus 로고    scopus 로고
    • The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression
    • Rackham O., Filipovska A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim. Biophys. Acta 2012, 1819:1008-1016.
    • (2012) Biochim. Biophys. Acta , vol.1819 , pp. 1008-1016
    • Rackham, O.1    Filipovska, A.2
  • 80
    • 56049084211 scopus 로고    scopus 로고
    • PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression
    • Lightowlers R.N., Chrzanowska-Lightowlers Z.M. PPR (pentatricopeptide repeat) proteins in mammals: important aids to mitochondrial gene expression. Biochem. J. 2008, 416:e5-e6.
    • (2008) Biochem. J. , vol.416
    • Lightowlers, R.N.1    Chrzanowska-Lightowlers, Z.M.2
  • 81
    • 84864315728 scopus 로고    scopus 로고
    • Multi-tasking: nuclear transcription factors with novel roles in the mitochondria
    • Szczepanek K., et al. Multi-tasking: nuclear transcription factors with novel roles in the mitochondria. Trends Cell Biol. 2012, 22:429-437.
    • (2012) Trends Cell Biol. , vol.22 , pp. 429-437
    • Szczepanek, K.1
  • 82
    • 70349655709 scopus 로고    scopus 로고
    • P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
    • 711 p following 712
    • Park J.Y., et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009, 105:705-712. 711 p following 712.
    • (2009) Circ Res. , vol.105 , pp. 705-712
    • Park, J.Y.1
  • 83
    • 0038418297 scopus 로고    scopus 로고
    • P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA
    • Yoshida Y., et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003, 63:3729-3734.
    • (2003) Cancer Res. , vol.63 , pp. 3729-3734
    • Yoshida, Y.1
  • 84
    • 84866918113 scopus 로고    scopus 로고
    • Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation
    • Berquist B.R., et al. Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation. Nucleic Acids Res. 2012, 40:8392-8405.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8392-8405
    • Berquist, B.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.