메뉴 건너뛰기




Volumn 53, Issue 6, 2012, Pages 912-926

An efficient rough feature selection algorithm with a multi-granulation view

Author keywords

Feature selection; Large scale data sets; Multi granulation view; Rough set theory

Indexed keywords

COMPUTATION THEORY; DATA MINING; FEATURE EXTRACTION; GRANULATION; LEARNING SYSTEMS; SOFT COMPUTING;

EID: 84861819666     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2012.02.004     Document Type: Article
Times cited : (189)

References (52)
  • 2
    • 0000255880 scopus 로고    scopus 로고
    • A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables
    • L. Polkowski, A. Skowron, Physica-Verlag Heidelberg
    • J.G. Bazan A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables L. Polkowski, A. Skowron, Rough Sets in Knowledge Discovery 1998 Physica-Verlag Heidelberg 321 365
    • (1998) Rough Sets in Knowledge Discovery , pp. 321-365
    • Bazan, J.G.1
  • 3
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • PII S0004370298000915
    • I. Düntsch, and G. Gediga Uncertainty measures of rough set prediction Artificial Intelligence 106 1998 109 137 (Pubitemid 128402352)
    • (1998) Artificial Intelligence , vol.106 , Issue.1 , pp. 109-137
    • Duntsch, I.1    Gediga, G.2
  • 4
    • 33750318838 scopus 로고    scopus 로고
    • Regranulation: A granular algorithm enabling communication between granular worlds
    • DOI 10.1016/j.ins.2006.03.020, PII S0020025506000788
    • S. Dick, A. Schenker, W. Pedrycz, and A. Kandel Regranulation: A granular algorithm enabling communication between granular worlds Information Science 177 2 2007 408 435 (Pubitemid 44634443)
    • (2007) Information Sciences , vol.177 , Issue.2 , pp. 408-435
    • Dick, S.1    Schenker, A.2    Pedrycz, W.3    Kandel, A.4
  • 5
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intelligent Data Analysis 1 1997 131 156
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 6
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artificial Intelligence 151 2003 155 176
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 7
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable feature selection Machine Learning Research 3 2003 1157 1182
    • (2003) Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 0032180332 scopus 로고    scopus 로고
    • Rough computational methods for information systems
    • PII S0004370298000903
    • J.W. Guan, and D.A. Bell Rough computational methods for information systems Artificial Intelligence 105 1998 77 103 (Pubitemid 128398274)
    • (1998) Artificial Intelligence , vol.105 , Issue.1-2 , pp. 77-103
    • Guan, J.W.1    Bell, D.A.2
  • 9
    • 77951101206 scopus 로고
    • An algorithm for computing a single covering
    • J.W. Grzymala-Busse, Kluwer Academic Publishers. Netherlands
    • J.W. Grzymala-Busse An algorithm for computing a single covering J.W. Grzymala-Busse, Managing Uncertainty in Expert Systems 1991 Kluwer Academic Publishers. Netherlands 66
    • (1991) Managing Uncertainty in Expert Systems , pp. 66
    • Grzymala-Busse, J.W.1
  • 12
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition 40 2007 3509 3521
    • (2007) Pattern Recognition , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 13
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Q.H. Hu, D.R. Yu, and Z.X. Xie Information-preserving hybrid data reduction based on fuzzy-rough techniques Pattern Recognition Letters 27 5 2006 414 423
    • (2006) Pattern Recognition Letters , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 14
    • 18844436201 scopus 로고    scopus 로고
    • A roughness measure for fuzzy sets
    • DOI 10.1016/j.ins.2004.07.017, PII S0020025504002178
    • V.N. Huynh, and Y. Nakamori A roughness measure for fuzzy sets Information Sciences 173 2005 255 275 (Pubitemid 40691106)
    • (2005) Information Sciences , vol.173 , Issue.1-3 , pp. 255-275
    • Huynh, V.-N.1    Nakamori, Y.2
  • 15
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • DOI 10.1109/TKDE.2004.96
    • R. Jensen, and Q. Shen Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches IEEE Transactions on Knowledge and Data Engineering 16 12 2004 1457 1471 (Pubitemid 40010921)
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 17
    • 84861792170 scopus 로고    scopus 로고
    • Fourth ed. China Renmin University Publishing Beijing
    • J.P. Jia Principles of Statistics Fourth ed. 2009 China Renmin University Publishing Beijing
    • (2009) Principles of Statistics
    • Jia, J.P.1
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 22
    • 76649084419 scopus 로고    scopus 로고
    • FUN: Fast discovery of minimal sets of attributes functionally determining a decision attribute
    • M. Kryszkiewicz, and P. Lasek FUN: fast discovery of minimal sets of attributes functionally determining a decision attribute Transactions on Rough Sets 9 2008 76 95
    • (2008) Transactions on Rough Sets , vol.9 , pp. 76-95
    • Kryszkiewicz, M.1    Lasek, P.2
  • 23
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence-based feature selection for machine learning-based text categorization
    • DOI 10.1016/j.ipm.2004.08.006, PII S0306457304000962
    • C.K. Lee, and G.G. Lee Information gain and divergence-based feature selection for machine learning-based text categorization Information Processing and Management 42 2006 155 165 (Pubitemid 41119082)
    • (2006) Information Processing and Management , vol.42 , pp. 155-165
    • Lee, C.1    Lee, G.G.2
  • 24
    • 1842674114 scopus 로고    scopus 로고
    • A new method for measuring uncertainty and fuzziness in rough set theory
    • DOI 10.1080/0308107021000013635
    • J.Y. Liang, K.S. Chin, C.Y. Dang, and C.M. Yam Richid A new method for measuring uncertainty and fuzziness in rough set theory International Journal of General Systems 31 4 2002 331 342 (Pubitemid 41623247)
    • (2002) International Journal of General Systems , vol.31 , Issue.4 , pp. 331-342
    • Liang, J.1    Chin, K.S.2    Dang, C.3    Yam, R.C.M.4
  • 28
    • 37349000869 scopus 로고    scopus 로고
    • Approximate boolean reasoning: Foundations and applications in data mining
    • N.S. Nguyen Approximate boolean reasoning: foundations and applications in data mining Lecture Notes in Computer Science 3100 2006 334 506
    • (2006) Lecture Notes in Computer Science , vol.3100 , pp. 334-506
    • Nguyen, N.S.1
  • 29
    • 84861813127 scopus 로고    scopus 로고
    • Guangxi Normal University Press
    • J.X. Ni Sampling survey 2002 Guangxi Normal University Press
    • (2002) Sampling Survey
    • Ni, J.X.1
  • 30
    • 0036532805 scopus 로고    scopus 로고
    • Feature analysis through information granulation and fuzzy sets
    • DOI 10.1016/S0031-3203(01)00102-9, PII S0031320301001029
    • W. Pedrycz, and G. Vukovich Feature analysis through information granulation and fuzzy sets Pattern Recognition 35 2002 825 834 (Pubitemid 34128809)
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 825-834
    • Pedrycz, W.1    Vukovich, G.2
  • 32
    • 0032188308 scopus 로고    scopus 로고
    • Rough set theory and its applications to data analysis
    • Z. Pawlak Rough set theory and its applications in data analysis Cybernetics and Systems 29 1998 661 688 (Pubitemid 128591850)
    • (1998) Cybernetics and Systems , vol.29 , Issue.7 , pp. 661-688
    • Pawlak, Z.1
  • 33
    • 33749668975 scopus 로고    scopus 로고
    • Rough sets and Boolean reasoning
    • DOI 10.1016/j.ins.2006.06.007, PII S0020025506001502
    • Z. Pawlak, and A. Skowron Rough sets and boolean reasoning Information Sciences 177 1 2007 41 73 (Pubitemid 44556700)
    • (2007) Information Sciences , vol.177 , Issue.1 , pp. 41-73
    • Pawlak, Z.1    Skowron, A.2
  • 34
    • 34548456458 scopus 로고    scopus 로고
    • Variation as Unalikeability
    • M. Perry, and G. Kader Variation as Unalikeability Teaching Statistics 27 2 2005 58 60
    • (2005) Teaching Statistics , vol.27 , Issue.2 , pp. 58-60
    • Perry, M.1    Kader, G.2
  • 35
    • 78651367557 scopus 로고    scopus 로고
    • Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation
    • J. Qian, D.Q. Miao, Z.H. Zhang, and W. Li Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation International Journal of Approximate Reasoning 52 2011 212 230
    • (2011) International Journal of Approximate Reasoning , vol.52 , pp. 212-230
    • Qian, J.1    Miao, D.Q.2    Zhang, Z.H.3    Li, W.4
  • 36
    • 58849144238 scopus 로고    scopus 로고
    • Knowledge structure, knowledge granulation and knowledge distance in a knowledge base
    • Y.H. Qian, J.Y. Liang, and C.Y. Dang Knowledge structure, knowledge granulation and knowledge distance in a knowledge base International Journal of Approximate Reasoning 50 1 2009 174 188
    • (2009) International Journal of Approximate Reasoning , vol.50 , Issue.1 , pp. 174-188
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.Y.3
  • 37
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation: An accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation: an accelerator for attribute reduction in rough set theory Artificial Intelligence 174 2010 597 618
    • (2010) Artificial Intelligence , vol.174 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 38
    • 34948842036 scopus 로고    scopus 로고
    • Measures for evaluating the decision performance of a decision table in rough set theory
    • Y.H. Qian, J.Y. Liang, D.Y. Li, H.Y. Zhang, and C.Y. Dang Measures for evaluating the decision performance of a decision table in rough set theory Information Sciences 178 2008 181 202
    • (2008) Information Sciences , vol.178 , pp. 181-202
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Zhang, H.Y.4    Dang, C.Y.5
  • 40
    • 33744584654 scopus 로고
    • Induction of decision trees
    • R. Quinlan Induction of decision trees Machine Learning 1 1 1986 81 106
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, R.1
  • 41
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • DOI 10.1016/S0167-8655(02)00196-4, PII S0167865502001964
    • R.W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognition Letters 24 2003 833 849 (Pubitemid 35391801)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 42
    • 0029307418 scopus 로고
    • Extracting laws from decision tables: A rough set approach
    • A. Skowron Extracting laws from decision tables: a rough set approach Computational Intelligence 11 1995 371 388
    • (1995) Computational Intelligence , vol.11 , pp. 371-388
    • Skowron, A.1
  • 43
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • D. Slezak Approximate entropy reducts Fundamenta Informaticae 53 3 - 4 2002 365 390
    • (2002) Fundamenta Informaticae , vol.53 , Issue.34 , pp. 365-390
    • Slezak, D.1
  • 44
    • 79955557689 scopus 로고    scopus 로고
    • Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification
    • D. Tian, X.J. Zeng, and J. Keane Core-generating approximate minimum entropy discretization for rough set feature selection in pattern classification International Journal of Approximate Reasoning 52 2011 863 880
    • (2011) International Journal of Approximate Reasoning , vol.52 , pp. 863-880
    • Tian, D.1    Zeng, X.J.2    Keane, J.3
  • 46
    • 33645310674 scopus 로고    scopus 로고
    • A comparative study of algebra viewpoint and information viewpoint in attribute reduction
    • G.Y. Wang, J. Zhao, and J.J. An A comparative study of algebra viewpoint and information viewpoint in attribute reduction Fundamenta Informaticae 68 3 2005 289 301
    • (2005) Fundamenta Informaticae , vol.68 , Issue.3 , pp. 289-301
    • Wang, G.Y.1    Zhao, J.2    An, J.J.3
  • 47
    • 77957903157 scopus 로고    scopus 로고
    • Comparative study of decision performance of decision tables induced by attribute reductions
    • W. Wei, J.Y. Liang, Y.H. Qian, F. Wang, and C.Y. Dang Comparative study of decision performance of decision tables induced by attribute reductions International Journal of General Systems 39 8 2010 813 838
    • (2010) International Journal of General Systems , vol.39 , Issue.8 , pp. 813-838
    • Wei, W.1    Liang, J.Y.2    Qian, Y.H.3    Wang, F.4    Dang, C.Y.5
  • 51
    • 58249098798 scopus 로고    scopus 로고
    • Discernibility matrix simplification for constructing attribute reducts
    • Y.Y. Yao, and Y. Zhao Discernibility matrix simplification for constructing attribute reducts Information Sciences 179 5 2009 867 882
    • (2009) Information Sciences , vol.179 , Issue.5 , pp. 867-882
    • Yao, Y.Y.1    Zhao, Y.2
  • 52
    • 45849092954 scopus 로고    scopus 로고
    • Attribute reduction in decision-theoretic rough set models
    • Y.Y. Yao, and Y. Zhao Attribute reduction in decision-theoretic rough set models Information Sciences 178 17 2008 3356 3373
    • (2008) Information Sciences , vol.178 , Issue.17 , pp. 3356-3373
    • Yao, Y.Y.1    Zhao, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.