메뉴 건너뛰기




Volumn 40, Issue 12, 2007, Pages 3509-3521

Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation

Author keywords

Attribute reduction; Categorical feature; Feature selection; Fuzzy set; Inclusion degree; Numerical feature; Rough set

Indexed keywords

ALGORITHMS; DATA MINING; FUZZY SETS; LEARNING SYSTEMS; SEMANTICS;

EID: 34547699509     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.03.017     Document Type: Article
Times cited : (419)

References (57)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable feature selection
    • Guyon I., and Elisseeff A. An introduction to variable feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., and Choi C.-H. Input feature selection for classification problems. IEEE Trans. on Neural Networks 13 (2002) 143-159
    • (2002) IEEE Trans. on Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 3
    • 31744443319 scopus 로고    scopus 로고
    • Genetic programming for simultaneous feature selection and classifier design
    • Muni D.P., and Das Pal N.R. Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B 36 1 (2006) 106-117
    • (2006) IEEE Trans. Syst. Man Cybern. Part B , vol.36 , Issue.1 , pp. 106-117
    • Muni, D.P.1    Das Pal, N.R.2
  • 4
    • 0037902234 scopus 로고    scopus 로고
    • On feature selection, curse-of-dimensionality and error probability in discriminant analysis
    • Pavlenko T. On feature selection, curse-of-dimensionality and error probability in discriminant analysis. J. Stat. Planning Inference 115 (2003) 565-584
    • (2003) J. Stat. Planning Inference , vol.115 , pp. 565-584
    • Pavlenko, T.1
  • 5
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 1-2 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 6
    • 0027002164 scopus 로고    scopus 로고
    • K. Kira, L.A. Rendell, The feature selection problem: traditional methods and a new algorithm, in: Proceedings of AAAI-92, San Jose, CA, 1992, pp. 129-134.
  • 7
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence-based feature selection for machine learning-based text categorization
    • Lee C.K., and Lee G.G. Information gain and divergence-based feature selection for machine learning-based text categorization. Inf. Process. Manage. 42 (2006) 155-165
    • (2006) Inf. Process. Manage. , vol.42 , pp. 155-165
    • Lee, C.K.1    Lee, G.G.2
  • 8
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., and Liu H. Consistency-based search in feature selection. Artif. Intell. 151 (2003) 155-176
    • (2003) Artif. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 12
    • 0031140388 scopus 로고    scopus 로고
    • Neural-network feature selector
    • Setiono R., and Liu H. Neural-network feature selector. IEEE Trans. Neural Networks 8 3 (1997) 654-662
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3 , pp. 654-662
    • Setiono, R.1    Liu, H.2
  • 13
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann J., Schnorr C., and Steidl G. Combined SVM-based feature selection and classification. Mach. Learn. 61 (2005) 129-150
    • (2005) Mach. Learn. , vol.61 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 14
    • 0031189159 scopus 로고    scopus 로고
    • Feature selection via discretization
    • Liu H., and Setiono R. Feature selection via discretization. IEEE Trans. Knowl. Data Eng. 9 4 (1997) 642-645
    • (1997) IEEE Trans. Knowl. Data Eng. , vol.9 , Issue.4 , pp. 642-645
    • Liu, H.1    Setiono, R.2
  • 15
    • 32644442306 scopus 로고    scopus 로고
    • An introduction of the condition class space with continuous value discretization and rough set theory
    • Beynon M.J. An introduction of the condition class space with continuous value discretization and rough set theory. Int. J. Intell. Syst. 21 2 (2006) 173-191
    • (2006) Int. J. Intell. Syst. , vol.21 , Issue.2 , pp. 173-191
    • Beynon, M.J.1
  • 16
    • 0000864105 scopus 로고    scopus 로고
    • Global discretization of continuous attributes as preprocessing for machine learning
    • Chmielewski M.R., and GrzymalaBusse J.W. Global discretization of continuous attributes as preprocessing for machine learning. Int. J. Approx. reasoning 15 4 (1996) 319-331
    • (1996) Int. J. Approx. reasoning , vol.15 , Issue.4 , pp. 319-331
    • Chmielewski, M.R.1    GrzymalaBusse, J.W.2
  • 17
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski R.W., and Skowron A. Rough set methods in feature selection and recognition. Pattern Recognition Lett. 24 (2003) 833-849
    • (2003) Pattern Recognition Lett. , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 18
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
    • Jensen R., and Shen Q. Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans. Knowl. data Eng. 16 12 (2004) 1457-1471
    • (2004) IEEE Trans. Knowl. data Eng. , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 19
    • 0036456212 scopus 로고    scopus 로고
    • R. Jenson, Q. Shen, Fuzzy-rough sets for descriptive dimensionality reductions, Proceedings of IEEE International Conference on Fuzzy Systems, pp. 29-34.
  • 20
    • 26944482728 scopus 로고    scopus 로고
    • Feature selection algorithm for data with both nominal and continuous features
    • Ho T.B., Cheung D., and Liu H. (Eds), Springer, Berlin, Heidelberg
    • Tang W.Y., and Mao K.Z. Feature selection algorithm for data with both nominal and continuous features. In: Ho T.B., Cheung D., and Liu H. (Eds). PAKDD 2005, Lecture Notes in Artificial Intelligence vol. 3518 (2005), Springer, Berlin, Heidelberg 683-688
    • (2005) PAKDD 2005, Lecture Notes in Artificial Intelligence , vol.3518 , pp. 683-688
    • Tang, W.Y.1    Mao, K.Z.2
  • 21
    • 0036532805 scopus 로고    scopus 로고
    • Feature analysis through information granulation and fuzzy sets
    • Pedrycz W., and Vukovich G. Feature analysis through information granulation and fuzzy sets. Pattern Recognition 35 (2002) 825-834
    • (2002) Pattern Recognition , vol.35 , pp. 825-834
    • Pedrycz, W.1    Vukovich, G.2
  • 22
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Shen Q., and Jensen R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition 37 7 (2004) 1351-1363
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 23
    • 0348170835 scopus 로고    scopus 로고
    • Fuzzy-rough attribute reduction with application to web categorization
    • Jensen R., and Shen Q. Fuzzy-rough attribute reduction with application to web categorization. Fuzzy Sets and Systems 141 3 (2004) 469-485
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.3 , pp. 469-485
    • Jensen, R.1    Shen, Q.2
  • 24
    • 17444379002 scopus 로고    scopus 로고
    • On fuzzy-rough sets approach to feature selection
    • Bhatt R.B., and Gopal M. On fuzzy-rough sets approach to feature selection. Pattern Recognition Lett. 26 (2005) 965-975
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 965-975
    • Bhatt, R.B.1    Gopal, M.2
  • 25
    • 19944424801 scopus 로고    scopus 로고
    • On the compact computational domain of fuzzy-rough sets
    • Bhatt R.B., and Gopal M. On the compact computational domain of fuzzy-rough sets. Pattern Recognition Lett. 26 (2005) 1632-1640
    • (2005) Pattern Recognition Lett. , vol.26 , pp. 1632-1640
    • Bhatt, R.B.1    Gopal, M.2
  • 26
    • 0036948613 scopus 로고    scopus 로고
    • Approximate entropy reducts
    • Slezak D. Approximate entropy reducts. Fundam. Inf. 53 3-4 (2002) 365-390
    • (2002) Fundam. Inf. , vol.53 , Issue.3-4 , pp. 365-390
    • Slezak, D.1
  • 27
    • 33645310674 scopus 로고    scopus 로고
    • A comparative study of algebra viewpoint and information viewpoint in attribute reduction
    • Wang G.Y., Zhao J., An J.J., et al. A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundam. Inf. 68 3 (2005) 289-301
    • (2005) Fundam. Inf. , vol.68 , Issue.3 , pp. 289-301
    • Wang, G.Y.1    Zhao, J.2    An, J.J.3
  • 28
    • 10644230137 scopus 로고    scopus 로고
    • Entropies of fuzzy indiscernibility relation and its operations
    • Hu Q.H., and Yu D.R. Entropies of fuzzy indiscernibility relation and its operations. Int. J. Uncertainty Fuzziness Knowl Based Syst. 12 5 (2004) 575-589
    • (2004) Int. J. Uncertainty Fuzziness Knowl Based Syst. , vol.12 , Issue.5 , pp. 575-589
    • Hu, Q.H.1    Yu, D.R.2
  • 29
    • 33645801018 scopus 로고    scopus 로고
    • Fuzzy probabilistic approximation spaces and their information measures
    • Hu Q.H., Yu D.R., Xie Z.X., and Liu J.F. Fuzzy probabilistic approximation spaces and their information measures. IEEE Trans. Fuzzy Syst. 14 2 (2006) 191-201
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.2 , pp. 191-201
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3    Liu, J.F.4
  • 30
    • 32644440353 scopus 로고    scopus 로고
    • Information-preserving hybrid data reduction based on fuzzy-rough techniques
    • Hu Q.H., Yu D.R., and Xie Z.X. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Lett. 27 5 (2006) 414-423
    • (2006) Pattern Recognition Lett. , vol.27 , Issue.5 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 31
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19 (1997) 111-127
    • (1997) Fuzzy Sets and Systems , vol.19 , pp. 111-127
    • Zadeh, L.1
  • 32
    • 0035155557 scopus 로고    scopus 로고
    • Information granulation and rough set approximation
    • Yao Y.Y. Information granulation and rough set approximation. Int. J. Intell. Syst. 16 1 (2001) 87-104
    • (2001) Int. J. Intell. Syst. , vol.16 , Issue.1 , pp. 87-104
    • Yao, Y.Y.1
  • 33
    • 0035151902 scopus 로고    scopus 로고
    • Information granules: towards foundations of granular computing
    • Skowron A., and Stepaniuk J. Information granules: towards foundations of granular computing. Int. J. Intell. Syst. 16 (2001) 57-85
    • (2001) Int. J. Intell. Syst. , vol.16 , pp. 57-85
    • Skowron, A.1    Stepaniuk, J.2
  • 34
    • 0036903052 scopus 로고    scopus 로고
    • Fuzzy descriptive models: an interactive framework of information granulation
    • Bortolan G., and Pedrycz W. Fuzzy descriptive models: an interactive framework of information granulation. IEEE Trans. Fuzzy Syst. 10 6 (2002) 743-755
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.6 , pp. 743-755
    • Bortolan, G.1    Pedrycz, W.2
  • 35
    • 14644418483 scopus 로고    scopus 로고
    • Constructive granular systems with universal approximation and fast knowledge discovery
    • Zhang Y.-Q. Constructive granular systems with universal approximation and fast knowledge discovery. IEEE Trans. Fuzzy Syst. 13 1 (2005) 48-57
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.1 , pp. 48-57
    • Zhang, Y.-Q.1
  • 36
    • 34547655792 scopus 로고    scopus 로고
    • T.Y. Lin, Neighborhood systems and relational database, Abstract, Proceedings of CSC '88, February, 1988, p. 725.
  • 38
    • 0037275090 scopus 로고    scopus 로고
    • Recursive information granulation: aggregation and interpretation issues
    • Bargiela A., and Pedrycz W. Recursive information granulation: aggregation and interpretation issues. IEEE Trans. Syst. Man Cybern. Part B 33 1 (2003) 96-112
    • (2003) IEEE Trans. Syst. Man Cybern. Part B , vol.33 , Issue.1 , pp. 96-112
    • Bargiela, A.1    Pedrycz, W.2
  • 39
    • 0001731957 scopus 로고    scopus 로고
    • Granular computing: fuzzy logic and rough sets
    • Zadeh L.A., and Kacprzyk J. (Eds), Physica-Verlag, Wurzburg
    • Lin T.Y. Granular computing: fuzzy logic and rough sets. In: Zadeh L.A., and Kacprzyk J. (Eds). Computing with Words in Information/Intelligent Systems (1999), Physica-Verlag, Wurzburg 183-200
    • (1999) Computing with Words in Information/Intelligent Systems , pp. 183-200
    • Lin, T.Y.1
  • 40
    • 0030142764 scopus 로고    scopus 로고
    • Fuzzy logic equals computing with words
    • Zadeh L.A. Fuzzy logic equals computing with words. IEEE Trans. Fuzzy Syst. 4 2 (1996) 103-111
    • (1996) IEEE Trans. Fuzzy Syst. , vol.4 , Issue.2 , pp. 103-111
    • Zadeh, L.A.1
  • 41
    • 35048879624 scopus 로고    scopus 로고
    • A partition model of granular computing
    • Yao Y.Y. A partition model of granular computing. LNCS Trans. Rough Sets 1 (2004) 232-253
    • (2004) LNCS Trans. Rough Sets , vol.1 , pp. 232-253
    • Yao, Y.Y.1
  • 43
    • 0034274083 scopus 로고    scopus 로고
    • Data mining and machine oriented modeling: a granular computing approach
    • Lin T.Y. Data mining and machine oriented modeling: a granular computing approach. J. Appl. Intell. 13 2 (2000) 113-124
    • (2000) J. Appl. Intell. , vol.13 , Issue.2 , pp. 113-124
    • Lin, T.Y.1
  • 44
    • 33751113581 scopus 로고    scopus 로고
    • Y.H. Chen, Y.Y. Yao, Multiview intelligent data analysis based on granular computing, Proceedings of 2006 IEEE International Conference on Granular Computing, 2006.
  • 46
    • 84963133436 scopus 로고
    • Rough fuzzy sets and fuzzy rough sets
    • Dubois D., and Prade H. Rough fuzzy sets and fuzzy rough sets. Int. J. General Syst. 17 2-3 (1990) 191-209
    • (1990) Int. J. General Syst. , vol.17 , Issue.2-3 , pp. 191-209
    • Dubois, D.1    Prade, H.2
  • 47
    • 1642525198 scopus 로고    scopus 로고
    • Constructive and axiomatic approaches of fuzzy approximation operators
    • Wu W., and Zhang W. Constructive and axiomatic approaches of fuzzy approximation operators. Inf. Sci. 159 3-4 (2004) 233-254
    • (2004) Inf. Sci. , vol.159 , Issue.3-4 , pp. 233-254
    • Wu, W.1    Zhang, W.2
  • 48
    • 11144273939 scopus 로고    scopus 로고
    • Granular data model: semantic data mining and computing with words
    • Lin T.Y. Granular data model: semantic data mining and computing with words. Proceeding of IEEE Conference on Fuzzy Systems (2004) 1141-1146
    • (2004) Proceeding of IEEE Conference on Fuzzy Systems , pp. 1141-1146
    • Lin, T.Y.1
  • 50
    • 3042547260 scopus 로고    scopus 로고
    • Generating an interpretable family of fuzzy partitions from data
    • Guillaume S., and Charnomordic B. Generating an interpretable family of fuzzy partitions from data. IEEE Trans. Fuzzy Syst. 12 3 (2004) 324-335
    • (2004) IEEE Trans. Fuzzy Syst. , vol.12 , Issue.3 , pp. 324-335
    • Guillaume, S.1    Charnomordic, B.2
  • 51
    • 13844298042 scopus 로고    scopus 로고
    • A model of granular data: a design problem with the Tchebyschev FCM
    • Bargiela A., and Pedrycz W. A model of granular data: a design problem with the Tchebyschev FCM. Soft. Comput. 9 (2005) 155-163
    • (2005) Soft. Comput. , vol.9 , pp. 155-163
    • Bargiela, A.1    Pedrycz, W.2
  • 52
    • 0013383512 scopus 로고    scopus 로고
    • Assessment of data redundancy in fuzzy relational databases based on semantic inclusion degree
    • Ma Z.M., Zhang W.J., and Ma W.Y. Assessment of data redundancy in fuzzy relational databases based on semantic inclusion degree. Inf. Process. Lett. 72 (1999) 25-29
    • (1999) Inf. Process. Lett. , vol.72 , pp. 25-29
    • Ma, Z.M.1    Zhang, W.J.2    Ma, W.Y.3
  • 53
    • 0036530141 scopus 로고    scopus 로고
    • Inclusion degree: a perspective on measures for rough set data analysis
    • Xu Z.B., Liang J.Y., Dang C.Y., and Chin K.S. Inclusion degree: a perspective on measures for rough set data analysis. Inf. Sci. 141 3-4 (2002) 227-236
    • (2002) Inf. Sci. , vol.141 , Issue.3-4 , pp. 227-236
    • Xu, Z.B.1    Liang, J.Y.2    Dang, C.Y.3    Chin, K.S.4
  • 54
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 8 (1965) 338-353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 55
    • 0042825977 scopus 로고    scopus 로고
    • Implicit rule-based fuzzy-neural networks using the identification algorithm of GA hybrid scheme based on information granulation
    • Oh S.-K., Pedrycz W., and Park H.-S. Implicit rule-based fuzzy-neural networks using the identification algorithm of GA hybrid scheme based on information granulation. Adv. Eng. Inf. 16 (2002) 247-263
    • (2002) Adv. Eng. Inf. , vol.16 , pp. 247-263
    • Oh, S.-K.1    Pedrycz, W.2    Park, H.-S.3
  • 56
    • 26944503062 scopus 로고    scopus 로고
    • Q. Hu, D. Yu, An improved clustering algorithm for information granulation, Lecture Notes in Artificial Intelligence, vol. 3613, FSKD 2005, Proceedings, 2005, pp. 494-504.
  • 57
    • 0035480423 scopus 로고    scopus 로고
    • An optimal algorithm for computing the max-min transitive closure of a fuzzy similarity matrix
    • Lee H.-S. An optimal algorithm for computing the max-min transitive closure of a fuzzy similarity matrix. Fuzzy Sets and Systems 123 1 (2001) 129-136
    • (2001) Fuzzy Sets and Systems , vol.123 , Issue.1 , pp. 129-136
    • Lee, H.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.