메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1491-1516

Quadratic programming feature selection

Author keywords

Feature selection; High dimensional data; Large data set; Nystr m method; Quadratic programming

Indexed keywords

CLASSIFICATION ACCURACY; DATA SETS; DIAGONALIZATIONS; FEATURE SELECTION; FEATURE SELECTION METHODS; HIGH DIMENSIONAL DATA; LARGE DATA; LARGE DATASETS; M METHOD; MATRIX; OPTIMIZATION PROBLEMS; QUADRATIC OPTIMIZATION PROBLEMS; REAL WORLD DATA; VERY LARGE DATUM;

EID: 77951965521     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (223)

References (39)
  • 7
    • 84942213019 scopus 로고
    • The best two independent measurements are not the two best
    • T.M. Cover. The best two independent measurements are not the two best. IEEE Trans. Systems, Man, and Cybernetics, 4:116-117, 1974.
    • (1974) IEEE Trans. Systems, Man, and Cybernetics , vol.4 , pp. 116-117
    • Cover, T.M.1
  • 8
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • April
    • C. Ding and H. Peng. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol, 3(2): 185-205, April 2005.
    • (2005) J Bioinform Comput Biol , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 11
    • 65749103423 scopus 로고    scopus 로고
    • BNS feature scaling: An improved representation over TF-IDF for SVM text classification
    • New York, NY, USA, ACM.
    • G. Forman. BNS feature scaling: an improved representation over TF-IDF for SVM text classification. In CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge mining, pages 263-270, New York, NY, USA, 2008. ACM.
    • (2008) CIKM '08: Proceeding of the 17th ACM Conference on Information and Knowledge Mining , pp. 263-270
    • Forman, G.1
  • 12
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res., 3:1289-1305, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 14
    • 0020826623 scopus 로고
    • A numerically stable dual method for solving strictly convex quadratic programs
    • D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27(1): 1-33, 1983.
    • (1983) Mathematical Programming , vol.27 , Issue.1 , pp. 1-33
    • Goldfarb, D.1    Idnani, A.2
  • 15
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1
  • 16
    • 85065703189 scopus 로고    scopus 로고
    • Correlation-based feature selection for discrete and numeric class machine learning
    • Morgan Kaufmann
    • M. A. Hall. Correlation-based feature selection for discrete and numeric class machine learning. In Proceedings of the International Conference on Machine Learning, pages 359-366. Morgan Kaufmann, 2000.
    • (2000) Proceedings of the International Conference on Machine Learning , pp. 359-366
    • Hall, M.A.1
  • 17
    • 54549099006 scopus 로고    scopus 로고
    • Performance of feature-selection methods in the classification of high-dimension data
    • J. Hua, W. D. Tembe, and E. R. Dougherty. Performance of feature-selection methods in the classification of high-dimension data. Pattern Recogn., 42(3):409-424, 2009.
    • (2009) Pattern Recogn. , vol.42 , Issue.3 , pp. 409-424
    • Hua, J.1    Tembe, W.D.2    Dougherty, E.R.3
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 23
    • 33947170570 scopus 로고    scopus 로고
    • A trainable feature extractor for handwritten digit recognition
    • F. Lauer, C. Y. Suen, and G. Bloch. A trainable feature extractor for handwritten digit recognition. Pattern Recogn., 40(6): 1816-1824, 2007.
    • (2007) Pattern Recogn. , vol.40 , Issue.6 , pp. 1816-1824
    • Lauer, F.1    Suen, C.Y.2    Bloch, G.3
  • 24
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. Lecun, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , pp. 2278-2324
    • Lecun, Y.1    Bengio, Y.2    Haffner, P.3
  • 25
    • 0346149934 scopus 로고    scopus 로고
    • Real-time classification of polymers with NIR spectral imaging and blob analysis
    • R. Leitner, H. Mairer, and A. Kercek. Real-time classification of polymers with NIR spectral imaging and blob analysis. Real-Time Imaging, 9:245-251, 2003.
    • (2003) Real-Time Imaging , vol.9 , pp. 245-251
    • Leitner, R.1    Mairer, H.2    Kercek, A.3
  • 26
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20:2429-2437, 2004.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 27
    • 37249058368 scopus 로고    scopus 로고
    • Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control
    • Dec.
    • K. Momen, S. Krishnan, and T. Chau. Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 15(4):535-542, Dec. 2007.
    • (2007) Neural Systems and Rehabilitation Engineering, IEEE Transactions on , vol.15 , Issue.4 , pp. 535-542
    • Momen, K.1    Krishnan, S.2    Chau, T.3
  • 29
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Software available at
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell, 27: 1226-1238, 2005. Software available at http: //research. janelia.org/peng/proj/mRMR/.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 30
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn., 53(1-2):23-69, 2003.
    • (2003) Mach. Learn , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 32
    • 39749179113 scopus 로고    scopus 로고
    • Online electromyographic control of a robotic prosthesis
    • Mar
    • P. Shenoy, K. J. Miller, B. Crawford, and R. N. Rao. Online electromyographic control of a robotic prosthesis. IEEE Trans Biomed Eng, 55(3): 1128-1135, Mar 2008.
    • (2008) IEEE Trans Biomed Eng , vol.55 , Issue.3 , pp. 1128-1135
    • Shenoy, P.1    Miller, K.J.2    Crawford, B.3    Rao, R.N.4
  • 33
    • 77951959746 scopus 로고    scopus 로고
    • version 1. Available electronically at cran.r-project.org/web/packages/ quadprog/index.html
    • B. A. Turlach and A. Weingessel. The quadprog package, version 1.4-11, 2000. Available electronically at cran.r-project.org/web/packages/quadprog/ index.html.
    • (2000) The Quadprog Package , pp. 4-11
    • Turlach, B.A.1    Weingessel, A.2
  • 37
    • 52249109156 scopus 로고    scopus 로고
    • Gene selection algorithm by combining reliefF and mRMR
    • Y Zhang, C. Ding, and T. Li. Gene selection algorithm by combining reliefF and mRMR. BMC Genomics, 9(Suppl 2), 2008.
    • (2008) BMC Genomics , vol.9 , Issue.SUPPL. 2
    • Zhang, Y.1    Ding, C.2    Li, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.