메뉴 건너뛰기




Volumn 24, Issue 4, 2013, Pages 332-338

Karyotypic changes as drivers and catalyzers of cellular evolvability: A perspective from non-pathogenic yeasts

Author keywords

Adaptive evolution; Aneuploidy; Genome instability; Phenotypic variation; Polyploidy

Indexed keywords

ADAPTATION; CELL MATURATION; CELL STRESS; ENVIRONMENTAL FACTOR; GENETIC VARIABILITY; GENOMIC INSTABILITY; GENOTYPE; GENOTYPE PHENOTYPE CORRELATION; KARYOTYPE; NONHUMAN; PHENOTYPE; REVIEW; YEAST;

EID: 84876740482     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2013.01.009     Document Type: Review
Times cited : (13)

References (69)
  • 3
    • 14844314129 scopus 로고    scopus 로고
    • Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains
    • Selmecki A., Bergmann S., Berman J. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Molecular Microbiology 2005, 55:1553-1565.
    • (2005) Molecular Microbiology , vol.55 , pp. 1553-1565
    • Selmecki, A.1    Bergmann, S.2    Berman, J.3
  • 7
    • 0030947344 scopus 로고    scopus 로고
    • Molecular evidence for an ancient duplication of the entire yeast genome
    • Wolfe K.H., Shields D.C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 1997, 387:708-713.
    • (1997) Nature , vol.387 , pp. 708-713
    • Wolfe, K.H.1    Shields, D.C.2
  • 8
    • 33751339726 scopus 로고    scopus 로고
    • Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from "Evolution Canyon": microsatellite polymorphism, ploidy and controversial sexual status
    • Ezov T.K., Boger-Nadjar E., Frenkel Z., Katsperovski I., Kemeny S., Nevo E., et al. Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from "Evolution Canyon": microsatellite polymorphism, ploidy and controversial sexual status. Genetics 2006, 174:1455-1468.
    • (2006) Genetics , vol.174 , pp. 1455-1468
    • Ezov, T.K.1    Boger-Nadjar, E.2    Frenkel, Z.3    Katsperovski, I.4    Kemeny, S.5    Nevo, E.6
  • 9
    • 0025482646 scopus 로고
    • The chromosomal constitution of wine strains of Saccharomyces cerevisiae
    • Bakalinsky A.T., Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 1990, 6:367-382.
    • (1990) Yeast , vol.6 , pp. 367-382
    • Bakalinsky, A.T.1    Snow, R.2
  • 10
    • 0028939304 scopus 로고
    • Determination of chromosome copy numbers in Saccharomyces cerevisiae strains via integrative probe and blot hybridization techniques
    • Hadfield C., Harikrishna J.A., Wilson J.A. Determination of chromosome copy numbers in Saccharomyces cerevisiae strains via integrative probe and blot hybridization techniques. Current Genetics 1995, 27:217-228.
    • (1995) Current Genetics , vol.27 , pp. 217-228
    • Hadfield, C.1    Harikrishna, J.A.2    Wilson, J.A.3
  • 12
    • 3042732668 scopus 로고    scopus 로고
    • Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation
    • Bond U., Neal C., Donnelly D., James T.C. Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Current Genetics 2004, 45:360-370.
    • (2004) Current Genetics , vol.45 , pp. 360-370
    • Bond, U.1    Neal, C.2    Donnelly, D.3    James, T.C.4
  • 13
    • 0031027672 scopus 로고    scopus 로고
    • Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines
    • Guijo S., Mauricio J.C., Salmon J.M., Ortega J.M. Determination of the relative ploidy in different Saccharomyces cerevisiae strains used for fermentation and 'flor' film ageing of dry sherry-type wines. Yeast 1997, 13:101-117.
    • (1997) Yeast , vol.13 , pp. 101-117
    • Guijo, S.1    Mauricio, J.C.2    Salmon, J.M.3    Ortega, J.M.4
  • 14
    • 78049439335 scopus 로고    scopus 로고
    • A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae
    • Hou L., Cao X., Wang C. A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae. Canadian Journal of Microbiology 2010, 56:495-500.
    • (2010) Canadian Journal of Microbiology , vol.56 , pp. 495-500
    • Hou, L.1    Cao, X.2    Wang, C.3
  • 15
    • 33749420389 scopus 로고    scopus 로고
    • Genomic convergence toward diploidy in Saccharomyces cerevisiae
    • Gerstein A.C., Chun H.J., Grant A., Otto S.P. Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genetics 2006, 2:e145.
    • (2006) PLoS Genetics , vol.2
    • Gerstein, A.C.1    Chun, H.J.2    Grant, A.3    Otto, S.P.4
  • 18
    • 58149166731 scopus 로고    scopus 로고
    • The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast
    • Gresham D., Desai M.M., Tucker C.M., Jenq H.T., Pai D.A., Ward A., et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genetics 2008, 4:e1000303.
    • (2008) PLoS Genetics , vol.4
    • Gresham, D.1    Desai, M.M.2    Tucker, C.M.3    Jenq, H.T.4    Pai, D.A.5    Ward, A.6
  • 19
    • 79955027266 scopus 로고    scopus 로고
    • Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution
    • Dhar R., Sagesser R., Weikert C., Yuan J., Wagner A. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. Journal of Evolutionary Biology 2011, 24:1135-1153.
    • (2011) Journal of Evolutionary Biology , vol.24 , pp. 1135-1153
    • Dhar, R.1    Sagesser, R.2    Weikert, C.3    Yuan, J.4    Wagner, A.5
  • 21
    • 56349123943 scopus 로고    scopus 로고
    • Evolution in a test tube: the hatchet before the scalpel
    • Rando O.J. Evolution in a test tube: the hatchet before the scalpel. Cell 2008, 135:789-791.
    • (2008) Cell , vol.135 , pp. 789-791
    • Rando, O.J.1
  • 22
    • 56349088536 scopus 로고    scopus 로고
    • Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor
    • Rancati G., Pavelka N., Fleharty B., Noll A., Trimble R., Walton K., et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008, 135:879-893.
    • (2008) Cell , vol.135 , pp. 879-893
    • Rancati, G.1    Pavelka, N.2    Fleharty, B.3    Noll, A.4    Trimble, R.5    Walton, K.6
  • 23
    • 77954894912 scopus 로고    scopus 로고
    • Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms
    • McCulley J.L., Petes T.D. Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms. Proceedings of the National Academy of Sciences of the United States of America 2010, 107:11465-11470.
    • (2010) Proceedings of the National Academy of Sciences of the United States of America , vol.107 , pp. 11465-11470
    • McCulley, J.L.1    Petes, T.D.2
  • 24
    • 52049085580 scopus 로고    scopus 로고
    • High rates of "unselected" aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains
    • Vernon M., Lobachev K., Petes T.D. High rates of "unselected" aneuploidy and chromosome rearrangements in tel1 mec1 haploid yeast strains. Genetics 2008, 179:237-247.
    • (2008) Genetics , vol.179 , pp. 237-247
    • Vernon, M.1    Lobachev, K.2    Petes, T.D.3
  • 25
    • 84862777815 scopus 로고    scopus 로고
    • Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy
    • Chen G., Bradford W.D., Seidel C.W., Li R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 2012, 482:246-250.
    • (2012) Nature , vol.482 , pp. 246-250
    • Chen, G.1    Bradford, W.D.2    Seidel, C.W.3    Li, R.4
  • 27
    • 34447546660 scopus 로고    scopus 로고
    • The distribution of fitness effects of new mutations
    • Eyre-Walker A., Keightley P.D. The distribution of fitness effects of new mutations. Nature Reviews Genetics 2007, 8:610-618.
    • (2007) Nature Reviews Genetics , vol.8 , pp. 610-618
    • Eyre-Walker, A.1    Keightley, P.D.2
  • 29
    • 3042742751 scopus 로고    scopus 로고
    • Experimental reduction of codon bias in the Drosophila alcohol dehydrogenase gene results in decreased ethanol tolerance of adult flies
    • Carlini D.B. Experimental reduction of codon bias in the Drosophila alcohol dehydrogenase gene results in decreased ethanol tolerance of adult flies. Journal of Evolutionary Biology 2004, 17:779-785.
    • (2004) Journal of Evolutionary Biology , vol.17 , pp. 779-785
    • Carlini, D.B.1
  • 30
    • 33846796000 scopus 로고    scopus 로고
    • Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis
    • Kahali B., Basak S., Ghosh T.C. Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis. Biochemical and Biophysical Research Communications 2007, 354:693-699.
    • (2007) Biochemical and Biophysical Research Communications , vol.354 , pp. 693-699
    • Kahali, B.1    Basak, S.2    Ghosh, T.C.3
  • 34
    • 75149143994 scopus 로고    scopus 로고
    • Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same
    • Weirauch M.T., Hughes T.R. Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends in Genetics 2010, 26:66-74.
    • (2010) Trends in Genetics , vol.26 , pp. 66-74
    • Weirauch, M.T.1    Hughes, T.R.2
  • 36
    • 80052796317 scopus 로고    scopus 로고
    • The molecular origins of evolutionary innovations
    • Wagner A. The molecular origins of evolutionary innovations. Trends in Genetics 2011, 27:397-410.
    • (2011) Trends in Genetics , vol.27 , pp. 397-410
    • Wagner, A.1
  • 38
    • 35548954250 scopus 로고    scopus 로고
    • The evolutionary consequences of polyploidy
    • Otto S.P. The evolutionary consequences of polyploidy. Cell 2007, 131:452-462.
    • (2007) Cell , vol.131 , pp. 452-462
    • Otto, S.P.1
  • 41
    • 55249096894 scopus 로고    scopus 로고
    • Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
    • de Godoy L.M., Olsen J.V., Cox J., Nielsen M.L., Hubner N.C., Frohlich F., et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 2008, 455:1251-1254.
    • (2008) Nature , vol.455 , pp. 1251-1254
    • de Godoy, L.M.1    Olsen, J.V.2    Cox, J.3    Nielsen, M.L.4    Hubner, N.C.5    Frohlich, F.6
  • 44
    • 69249203618 scopus 로고    scopus 로고
    • Ploidy and the causes of genomic evolution
    • Gerstein A.C., Otto S.P. Ploidy and the causes of genomic evolution. Journal of Heredity 2009, 100:571-581.
    • (2009) Journal of Heredity , vol.100 , pp. 571-581
    • Gerstein, A.C.1    Otto, S.P.2
  • 45
    • 0035103768 scopus 로고    scopus 로고
    • Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae)
    • Mable B.K., Otto S.P. Masking and purging mutations following EMS treatment in haploid, diploid and tetraploid yeast (Saccharomyces cerevisiae). Genetical Research 2001, 77:9-26.
    • (2001) Genetical Research , vol.77 , pp. 9-26
    • Mable, B.K.1    Otto, S.P.2
  • 47
    • 79959237457 scopus 로고    scopus 로고
    • Dipoid-specific genome stability genes of S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress
    • Alabrudzinska M., Skoneczny M., Skoneczna A. Dipoid-specific genome stability genes of S. cerevisiae: genomic screen reveals haploidization as an escape from persisting DNA rearrangement stress. PLoS ONE 2011, 6:e21124.
    • (2011) PLoS ONE , vol.6
    • Alabrudzinska, M.1    Skoneczny, M.2    Skoneczna, A.3
  • 48
    • 84860551443 scopus 로고    scopus 로고
    • Haploidization in Saccharomyces cerevisiae induced by a deficiency in homologous recombination
    • Song W., Petes T.D. Haploidization in Saccharomyces cerevisiae induced by a deficiency in homologous recombination. Genetics 2012, 191:279-284.
    • (2012) Genetics , vol.191 , pp. 279-284
    • Song, W.1    Petes, T.D.2
  • 49
    • 34247578808 scopus 로고    scopus 로고
    • Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans
    • Schoustra S.E., Debets A.J., Slakhorst M., Hoekstra R.F. Mitotic recombination accelerates adaptation in the fungus Aspergillus nidulans. PLoS Genetics 2007, 3:e68.
    • (2007) PLoS Genetics , vol.3
    • Schoustra, S.E.1    Debets, A.J.2    Slakhorst, M.3    Hoekstra, R.F.4
  • 50
    • 80054054260 scopus 로고    scopus 로고
    • The aneuploidy paradox: costs and benefits of an incorrect karyotype
    • Sheltzer J.M., Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends in Genetics 2011, 27:446-453.
    • (2011) Trends in Genetics , vol.27 , pp. 446-453
    • Sheltzer, J.M.1    Amon, A.2
  • 51
    • 78149423336 scopus 로고    scopus 로고
    • Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast
    • Pavelka N., Rancati G., Zhu J., Bradford W.D., Saraf A., Florens L., et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 2010, 468:321-325.
    • (2010) Nature , vol.468 , pp. 321-325
    • Pavelka, N.1    Rancati, G.2    Zhu, J.3    Bradford, W.D.4    Saraf, A.5    Florens, L.6
  • 53
    • 34548131710 scopus 로고    scopus 로고
    • Effects of aneuploidy on cellular physiology and cell division in haploid yeast
    • Torres E.M., Sokolsky T., Tucker C.M., Chan L.Y., Boselli M., Dunham M.J., et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007, 317:916-924.
    • (2007) Science , vol.317 , pp. 916-924
    • Torres, E.M.1    Sokolsky, T.2    Tucker, C.M.3    Chan, L.Y.4    Boselli, M.5    Dunham, M.J.6
  • 56
    • 84876708416 scopus 로고    scopus 로고
    • Never in neutral: A systems biology and evolutionary perspective on how aneuploidy contributes to human diseases
    • in press
    • Pavelka N, Rancati G. Never in neutral: A systems biology and evolutionary perspective on how aneuploidy contributes to human diseases. Cytogenet Genome Res 2012; in press.
    • (2012) Cytogenet Genome Res
    • Pavelka, N.1    Rancati, G.2
  • 57
    • 78649636162 scopus 로고    scopus 로고
    • Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer
    • Pavelka N., Rancati G., Li R. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer. Current Opinion in Cell Biology 2010, 22:809-815.
    • (2010) Current Opinion in Cell Biology , vol.22 , pp. 809-815
    • Pavelka, N.1    Rancati, G.2    Li, R.3
  • 58
    • 84866296846 scopus 로고    scopus 로고
    • Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap
    • Chen G., Rubinstein B., Li R. Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap. Bioessays 2012, 34:893-900.
    • (2012) Bioessays , vol.34 , pp. 893-900
    • Chen, G.1    Rubinstein, B.2    Li, R.3
  • 59
    • 0025007652 scopus 로고
    • High levels of chromosome instability in polyploids of Saccharomyces cerevisiae
    • Mayer V.W., Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutation Research 1990, 231:177-186.
    • (1990) Mutation Research , vol.231 , pp. 177-186
    • Mayer, V.W.1    Aguilera, A.2
  • 63
    • 33751306051 scopus 로고    scopus 로고
    • Growth arrest and chromosome instability in aneuploid yeast
    • Niwa O., Tange Y., Kurabayashi A. Growth arrest and chromosome instability in aneuploid yeast. Yeast 2006, 23:937-950.
    • (2006) Yeast , vol.23 , pp. 937-950
    • Niwa, O.1    Tange, Y.2    Kurabayashi, A.3
  • 65
    • 78149464968 scopus 로고    scopus 로고
    • Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae
    • St Charles J., Hamilton M.L., Petes T.D. Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics 2010, 186:537-550.
    • (2010) Genetics , vol.186 , pp. 537-550
    • St Charles, J.1    Hamilton, M.L.2    Petes, T.D.3
  • 66
    • 84863691442 scopus 로고    scopus 로고
    • Karyotypic determinants of chromosome instability in aneuploid budding yeast
    • Zhu J., Pavelka N., Bradford W.D., Rancati G., Li R. Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics 2012, 8:e1002719.
    • (2012) PLoS Genetics , vol.8
    • Zhu, J.1    Pavelka, N.2    Bradford, W.D.3    Rancati, G.4    Li, R.5
  • 67
    • 0026777384 scopus 로고
    • Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora
    • Butler D.K. Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora. Genetics 1992, 131:581-592.
    • (1992) Genetics , vol.131 , pp. 581-592
    • Butler, D.K.1
  • 68
    • 19444361887 scopus 로고    scopus 로고
    • Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast
    • Tosato V., Waghmare S.K., Bruschi C.V. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast. Chromosoma 2005, 114:15-27.
    • (2005) Chromosoma , vol.114 , pp. 15-27
    • Tosato, V.1    Waghmare, S.K.2    Bruschi, C.V.3
  • 69
    • 78951481848 scopus 로고    scopus 로고
    • Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae
    • Rossi B., Noel P., Bruschi C.V. Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae. Genetics 2010, 186:775-790.
    • (2010) Genetics , vol.186 , pp. 775-790
    • Rossi, B.1    Noel, P.2    Bruschi, C.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.