메뉴 건너뛰기




Volumn 56, Issue , 2013, Pages 32-44

Predicting groundwater level fluctuations with meteorological effect implications-A comparative study among soft computing techniques

Author keywords

ARMA; Artificial intelligence techniques; Groundwater level fluctuations; Prediction

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ARMA; ARTIFICIAL INTELLIGENCE TECHNIQUES; AUTOREGRESSIVE MOVING AVERAGE; GENE EXPRESSION PROGRAMMING; GROUNDWATER LEVEL FLUCTUATION; GROUNDWATER LEVEL FORECASTING; SUPPORT VECTOR MACHINE TECHNIQUES;

EID: 84876308067     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2013.01.007     Document Type: Article
Times cited : (158)

References (42)
  • 1
    • 0003491818 scopus 로고    scopus 로고
    • Crop evapotranspiration. Guide lines for computing crop evapotranspiration
    • FAO Irrigation and Drainage Paper no. 56, Rome, Italy.
    • Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration. Guide lines for computing crop evapotranspiration. FAO Irrigation and Drainage Paper no. 56, Rome, Italy.
    • (1998)
    • Allen, R.G.1    Pereira, L.S.2    Raes, D.3    Smith, M.4
  • 2
    • 0031715454 scopus 로고    scopus 로고
    • Modeling water table fluctuations by means of a stochastic differential equation
    • Bierkens M.F.P. Modeling water table fluctuations by means of a stochastic differential equation. Water Resources Research 1998, 34(10):2485-24499.
    • (1998) Water Resources Research , vol.34 , Issue.10 , pp. 2485-24499
    • Bierkens, M.F.P.1
  • 3
    • 0004311217 scopus 로고
    • Time series analysis: Forecasting and control.
    • Holden Day, Boca Raton, Florida.
    • Box, G.E.P. Jenkins, G.M., 1976. Time series analysis: Forecasting and control. Holden Day, Boca Raton, Florida.
    • (1976)
    • Box, G.E.P.1    Jenkins, G.M.2
  • 4
    • 15944365544 scopus 로고    scopus 로고
    • A neural network model for predicting aquifer water level elevations
    • Coppola E., Rana A., Poulton M., Szidarovszky F., Uhl V. A neural network model for predicting aquifer water level elevations. Ground Water 2005, 43(2):231-241.
    • (2005) Ground Water , vol.43 , Issue.2 , pp. 231-241
    • Coppola, E.1    Rana, A.2    Poulton, M.3    Szidarovszky, F.4    Uhl, V.5
  • 5
    • 33846235962 scopus 로고    scopus 로고
    • Multi objective analysis of a public wellfield using artificial neural networks
    • Coppola E., Szidarovszky F., Davis D., Spayad S., Poulton M., Roman E. Multi objective analysis of a public wellfield using artificial neural networks. Ground Water 2007, 45(1):53-61.
    • (2007) Ground Water , vol.45 , Issue.1 , pp. 53-61
    • Coppola, E.1    Szidarovszky, F.2    Davis, D.3    Spayad, S.4    Poulton, M.5    Roman, E.6
  • 6
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P., Anctil F., Aravena R., Bobee B. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 2001, 37(4):885-896.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 7
    • 37549038684 scopus 로고    scopus 로고
    • Neural networks to simulate regional groundwater levels affected by human activities
    • Feng S., Kang S., Huo Z., Chen S., Mao X. Neural networks to simulate regional groundwater levels affected by human activities. Ground Water 2008, 46(1):80-90.
    • (2008) Ground Water , vol.46 , Issue.1 , pp. 80-90
    • Feng, S.1    Kang, S.2    Huo, Z.3    Chen, S.4    Mao, X.5
  • 8
    • 10644274066 scopus 로고    scopus 로고
    • Gene expression programming in problem solving
    • Sixth Online World Conference on Soft Computing in Industrial Applications (invited tutorial).
    • Ferreira, C., 2001a. Gene expression programming in problem solving. In: Sixth Online World Conference on Soft Computing in Industrial Applications (invited tutorial).
    • (2001)
    • Ferreira, C.1
  • 9
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 2001, 13(2):87-129.
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 11
    • 36649000728 scopus 로고    scopus 로고
    • Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique
    • Gill M.K., Asefa T., Kaheil Y., McKee M. Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique. Water Resources Research 2007, 43(7):W07416.
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Gill, M.K.1    Asefa, T.2    Kaheil, Y.3    McKee, M.4
  • 14
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong Y.S.T., White P.A. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Advances in Water Resources 2009, 32:110-119.
    • (2009) Advances in Water Resources , vol.32 , pp. 110-119
    • Hong, Y.S.T.1    White, P.A.2
  • 18
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi O. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 2005, 50(4):683-696.
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 19
    • 57049168146 scopus 로고    scopus 로고
    • Modelling daily suspended sediment of rivers in Turkey using several data driven techniques
    • Kisi O., Yuksel I., Dogan E. Modelling daily suspended sediment of rivers in Turkey using several data driven techniques. Hydrological Sciences Journal 2008, 53(6):1270-1285.
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.6 , pp. 1270-1285
    • Kisi, O.1    Yuksel, I.2    Dogan, E.3
  • 20
    • 84860608391 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    • Kisi O., Shiri J. Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations. Hydrology Research 2012, 43(3):286-300.
    • (2012) Hydrology Research , vol.43 , Issue.3 , pp. 286-300
    • Kisi, O.1    Shiri, J.2
  • 21
    • 0003882343 scopus 로고
    • Genetic Programming: On the Programming of Computers by Means of Natural Selection
    • The MIT Press
    • Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA 1992, The MIT Press, 840 pp.
    • (1992) Cambridge, MA , pp. 840
    • Koza, J.R.1
  • 22
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 1999, 35(1):233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 23
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environmental Modeling and Software 2000, 15:101-124.
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river ststem: current status and future directions
    • Maier H.R., Jain A., Dandy D.C., Sudheer K.P. Methods used for the development of neural networks for the prediction of water resource variables in river ststem: current status and future directions. Environmental Modeling and Software 2010, 25:891-909.
    • (2010) Environmental Modeling and Software , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, D.C.3    Sudheer, K.P.4
  • 26
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia A., Ghafari Gousheh M., Piri J., Amin S., Han D. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Advances in Water Resources 2009, 32:88-97.
    • (2009) Advances in Water Resources , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Ghafari Gousheh, M.2    Piri, J.3    Amin, S.4    Han, D.5
  • 27
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak P.C., Satyaji Rao Y.R., Sudheer K.P. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management 2006, 20:77-90.
    • (2006) Water Resources Management , vol.20 , pp. 77-90
    • Nayak, P.C.1    Satyaji Rao, Y.R.2    Sudheer, K.P.3
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, Massachusetts, USA, B. Schölkopf, C.J.C. Burges, A.J. Smolar (Eds.)
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning 1999, MIT Press, Cambridge, Massachusetts, USA. B. Schölkopf, C.J.C. Burges, A.J. Smolar (Eds.).
    • (1999) Advances in Kernel Methods-Support Vector Learning
    • Platt, J.C.1
  • 29
    • 0004384614 scopus 로고    scopus 로고
    • New Age International Publishers, New Delhi, 563
    • Raghunath H.M. Ground Water 2003, New Age International Publishers, New Delhi, 563. 2nd ed.
    • (2003) Ground Water
    • Raghunath, H.M.1
  • 30
    • 0028193610 scopus 로고
    • Characterization of aquifer properties using artificial neural networks: neural Kriging
    • Rizzo D.M., Dougherty D.E. Characterization of aquifer properties using artificial neural networks: neural Kriging. Water Resources Research 1994, 30(2):483-497.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 483-497
    • Rizzo, D.M.1    Dougherty, D.E.2
  • 33
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
    • Shiri J., Kisi O. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Computers & Geosciences 2011, 37(10):1692-1701.
    • (2011) Computers & Geosciences , vol.37 , Issue.10 , pp. 1692-1701
    • Shiri, J.1    Kisi, O.2
  • 34
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudher K.P., Goasin A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 2002, 16:1325-1330.
    • (2002) Hydrological Processes , vol.16 , pp. 1325-1330
    • Sudher, K.P.1    Goasin, A.K.2    Ramasastri, K.S.3
  • 35
    • 34548134022 scopus 로고    scopus 로고
    • A hybrid artifiucial neural network-numerical model for groundwater problems
    • Szidarovszky F., Coppola E., Long J., Hall A., Poulton M. A hybrid artifiucial neural network-numerical model for groundwater problems. Ground Water 2007, 45(5):590-600.
    • (2007) Ground Water , vol.45 , Issue.5 , pp. 590-600
    • Szidarovszky, F.1    Coppola, E.2    Long, J.3    Hall, A.4    Poulton, M.5
  • 36
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on System, Man and Cybernetics 1985, 15(1):116-132.
    • (1985) IEEE Transactions on System, Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 41
    • 33847316019 scopus 로고    scopus 로고
    • Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks
    • Yoon H., Hyun Y., Lee K.K. Forecasting solute breakthrough curves through the unsaturated zone using artificial neural networks. Journal of Hydrology 2007, 335:68-77.
    • (2007) Journal of Hydrology , vol.335 , pp. 68-77
    • Yoon, H.1    Hyun, Y.2    Lee, K.K.3
  • 42
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • doi: 10.1016/j. hydrol. 2010. 11. 002.
    • Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., Lee, K.K., 2010. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology doi: 10.1016/j. hydrol. 2010. 11. 002.
    • (2010) Journal of Hydrology
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.