메뉴 건너뛰기




Volumn 53, Issue 6, 2008, Pages 1270-1285

Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques

Author keywords

Adaptive neuro fuzzy technique; Eastern Black Sea region; Neural networks; Suspended sediment modelling

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; FUZZY NEURAL NETWORKS; IMAGE CLASSIFICATION; RIVER POLLUTION; RIVERS; SEDIMENTATION; SEDIMENTOLOGY; SEDIMENTS; STREAM FLOW; SUGAR (SUCROSE); UNCERTAIN SYSTEMS; VEGETATION;

EID: 57049168146     PISSN: 02626667     EISSN: None     Source Type: Journal    
DOI: 10.1623/hysj.53.6.1270     Document Type: Article
Times cited : (59)

References (30)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrological applications
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology. II: Hydrological applications. J Hydrol. Engng ASCE 5(2), 124-137.
    • (2000) J Hydrol. Engng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead, D. & Lowe, D. (1988) Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321-355.
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 4
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu, H. K. (2003) Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrol. Sci. J. 48(3), 349-361.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 5
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
    • Cigizoglu, H. K. (2004) Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons. Adv. Water Resour. 27, 185-195.
    • (2004) Adv. Water Resour , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 6
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Cigizoglu, H. K. & Kisi, O. (2006) Methods to improve the neural network performance in suspended sediment estimation. J. Hydrol. 317, 221-238.
    • (2006) J. Hydrol , vol.317 , pp. 221-238
    • Cigizoglu, H.K.1    Kisi, O.2
  • 7
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Cybenco, G. (1989) Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals and Systems 2, 303-314.
    • (1989) Mathematics of Control, Signals and Systems , vol.2 , pp. 303-314
    • Cybenco, G.1
  • 8
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, W. C. & Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 43(1), 47-66.
    • (1998) Hydrol. Sci. J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 9
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • Hagan, M. T. & Menhaj, M. B. (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 6, 861-867.
    • (1994) IEEE Trans. Neural Networks , vol.6 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 10
    • 0003413187 scopus 로고    scopus 로고
    • second edn, Prentice-Hall, Upper Saddle River, New Jersey, USA
    • Haykin, S. (1998) Neural Networks - A Comprehensive Foundation (second edn), 26-32. Prentice-Hall, Upper Saddle River, New Jersey, USA.
    • (1998) Neural Networks - A Comprehensive Foundation , pp. 26-32
    • Haykin, S.1
  • 11
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik, K., Stinchcombe, M. & White, H. (1989) Multilayer feed forward networks are universal approximators. Neural Networks 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 12
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu, T. S., Lam, K. C. & Ng, S. T. (2001) River flow time series prediction with a range-dependent neural network. Hydrol. Sci. J. 46(5), 729-745.
    • (2001) Hydrol. Sci. J , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 13
    • 0034746272 scopus 로고    scopus 로고
    • Development of integrated sediment rating curves using ANNs
    • Jain, S. K. (2001) Development of integrated sediment rating curves using ANNs. J. Hydraul. Engng ASCE 127(1), 30-37.
    • (2001) J. Hydraul. Engng ASCE , vol.127 , Issue.1 , pp. 30-37
    • Jain, S.K.1
  • 14
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain, S. K., Das, D. & Srivastava, D. K. (1999) Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. ASCE 125(5), 263-271.
    • (1999) J. Water Resour. Plan. Manage. ASCE , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, D.2    Srivastava, D.K.3
  • 15
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.-S. R. (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manage. & Cybernetics 23(3), 665-685.
    • (1993) IEEE Trans. Syst. Manage. & Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 17
    • 10244249159 scopus 로고    scopus 로고
    • Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation
    • Kisi, O. (2004) Multi-layer perceptrons with Levenberg-Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrol. Sci. J. 49(6), 1025-1040.
    • (2004) Hydrol. Sci. J , vol.49 , Issue.6 , pp. 1025-1040
    • Kisi, O.1
  • 18
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Kisi, O. (2005) Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrol. Sci. J. 50(4), 683-696.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 19
    • 0038009289 scopus 로고    scopus 로고
    • Radial basis function networks applied to DNBR calculation in digital core protection systems
    • Lee, G. C. & Chang, S. H. (2003) Radial basis function networks applied to DNBR calculation in digital core protection systems. Ann. Nuclear Energy 30, 1561-1572.
    • (2003) Ann. Nuclear Energy , vol.30 , pp. 1561-1572
    • Lee, G.C.1    Chang, S.H.2
  • 20
    • 0023962844 scopus 로고
    • Uncertainty in suspended sediment transport curves
    • McBean, E. A. & Al-Nassri, S. (1988) Uncertainty in suspended sediment transport curves. J. Hydrol. Engng ASCE 114(1), 63-74.
    • (1988) J. Hydrol. Engng ASCE , vol.114 , Issue.1 , pp. 63-74
    • McBean, E.A.1    Al-Nassri, S.2
  • 21
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi, N. S., Singh, R. & Reddy, L. S. (2006) Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J. Hydrol. Engng ASCE 11(1), 71-79.
    • (2006) J. Hydrol. Engng ASCE , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 22
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman, H. & Sunilkumar, N. (1995) Multivariate modelling of water resources time series using artificial neural networks. Hydrol. Sci. J. 40(2), 145-163.
    • (1995) Hydrol. Sci. J , vol.40 , Issue.2 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 23
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad, M., Bigras, P., Turgeon, A. & Duquette, R. (1996) Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res. 32(1), 179-186.
    • (1996) Water Resour. Res , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 24
    • 16444379492 scopus 로고    scopus 로고
    • Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models
    • Sayed, T., Tavakolie, A. & Razavi, A. (2003). Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models. J. Comput. Civil Engng ASCE 17(2), 123-130.
    • (2003) J. Comput. Civil Engng ASCE , vol.17 , Issue.2 , pp. 123-130
    • Sayed, T.1    Tavakolie, A.2    Razavi, A.3
  • 25
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
    • Sivakumar, B., Jayawardena, A. W. & Fernando, T. M. K. G. (2002) River flow forecasting: use of phase space reconstruction and artificial neural networks approaches. J. Hydrol. 265, 225-245.
    • (2002) J. Hydrol , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 26
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine, D. P. & Dulal, K. N. (2003) Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 48(3), 399-411.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 27
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D. F. (1991) A general regression neural network. IEEE Trans. Neural Networks 2(6), 568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 28
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G. (2002) Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47(6), 879-892.
    • (2002) Hydrol. Sci. J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 29
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-runoff processes inside an artificial neural network
    • Wilby, R. L., Abrahart, R. J. & Dawson, C. W. (2003) Detection of conceptual model rainfall-runoff processes inside an artificial neural network. Hydrol. Sci. J. 48(2), 163-181.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 30
    • 0033019602 scopus 로고    scopus 로고
    • Short term stream flow forecasting using artificial neural networks
    • Zealand, C. M., Burn, D. H. & Simonovic, S. P. (1999) Short term stream flow forecasting using artificial neural networks. J. Hydrol. 214, 32-48.
    • (1999) J. Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.