메뉴 건너뛰기




Volumn 12, Issue 3, 2013, Pages 196-204

Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe

Author keywords

3 Methyladenine; Base excision repair; DNA glycosylase; Ethenoadenine; Protein DNA interactions

Indexed keywords

ADENINE; AMINO ACID; DNA GLYCOSYLTRANSFERASE; FUNGAL DNA; FUNGAL ENZYME; GUANINE; PROTEIN MAG1; PROTEIN MAG2; UNCLASSIFIED DRUG;

EID: 84875366634     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2012.12.001     Document Type: Article
Times cited : (6)

References (52)
  • 2
    • 0035834751 scopus 로고    scopus 로고
    • Turning on uracil-DNA glycosylase using a pyrene nucleotide switch
    • Jiang Y.L., Kwon K., Stivers J.T. Turning on uracil-DNA glycosylase using a pyrene nucleotide switch. J. Biol. Chem. 2001, 276:42347-42354.
    • (2001) J. Biol. Chem. , vol.276 , pp. 42347-42354
    • Jiang, Y.L.1    Kwon, K.2    Stivers, J.T.3
  • 3
    • 0037199967 scopus 로고    scopus 로고
    • Effects of hydrogen bonding within a damaged base pair on the activity of wild type and DNA-intercalating mutants of human alkyladenine DNA glycosylase
    • Vallur A.C., Feller J.A., Abner C.W., Tran R.K., Bloom L.B. Effects of hydrogen bonding within a damaged base pair on the activity of wild type and DNA-intercalating mutants of human alkyladenine DNA glycosylase. J. Biol. Chem. 2002, 277:31673-31678.
    • (2002) J. Biol. Chem. , vol.277 , pp. 31673-31678
    • Vallur, A.C.1    Feller, J.A.2    Abner, C.W.3    Tran, R.K.4    Bloom, L.B.5
  • 4
    • 0141754009 scopus 로고    scopus 로고
    • Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases
    • Eichman B.F., O'Rourke E.J., Radicella J.P., Ellenberger T. Crystal structures of 3-methyladenine DNA glycosylase MagIII and the recognition of alkylated bases. EMBO J. 2003, 22:4898-4909.
    • (2003) EMBO J. , vol.22 , pp. 4898-4909
    • Eichman, B.F.1    O'Rourke, E.J.2    Radicella, J.P.3    Ellenberger, T.4
  • 5
    • 27444434257 scopus 로고    scopus 로고
    • Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY
    • Livingston A.L., Kundu S., Henderson Pozzi M., Anderson D.W., David S.S. Insight into the roles of tyrosine 82 and glycine 253 in the Escherichia coli adenine glycosylase MutY. Biochemistry 2005, 44:14179-14190.
    • (2005) Biochemistry , vol.44 , pp. 14179-14190
    • Livingston, A.L.1    Kundu, S.2    Henderson Pozzi, M.3    Anderson, D.W.4    David, S.S.5
  • 6
    • 73649103725 scopus 로고    scopus 로고
    • Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase
    • Maiti A., Morgan M.T., Drohat A.C. Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J. Biol. Chem. 2009, 284:36680-36688.
    • (2009) J. Biol. Chem. , vol.284 , pp. 36680-36688
    • Maiti, A.1    Morgan, M.T.2    Drohat, A.C.3
  • 7
    • 33644511436 scopus 로고    scopus 로고
    • Structure of a DNA glycosylase searching for lesions
    • Banerjee A., Santos W.L., Verdine G.L. Structure of a DNA glycosylase searching for lesions. Science 2006, 311:1153-1157.
    • (2006) Science , vol.311 , pp. 1153-1157
    • Banerjee, A.1    Santos, W.L.2    Verdine, G.L.3
  • 9
    • 78149245429 scopus 로고    scopus 로고
    • Structure of Escherichia coli AlkA in complex with undamaged DNA
    • Bowman B.R., Lee S., Wang S., Verdine G.L. Structure of Escherichia coli AlkA in complex with undamaged DNA. J. Biol. Chem. 2010, 285:35783-35791.
    • (2010) J. Biol. Chem. , vol.285 , pp. 35783-35791
    • Bowman, B.R.1    Lee, S.2    Wang, S.3    Verdine, G.L.4
  • 10
    • 82555188026 scopus 로고    scopus 로고
    • Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase
    • Adhikary S., Eichman B.F. Analysis of substrate specificity of Schizosaccharomyces pombe Mag1 alkylpurine DNA glycosylase. EMBO Rep. 2011, 12:1286-1292.
    • (2011) EMBO Rep. , vol.12 , pp. 1286-1292
    • Adhikary, S.1    Eichman, B.F.2
  • 11
    • 0020455497 scopus 로고
    • Partial purification and characterization of 3-methyladenine-DNA glycosylase from human placenta
    • Gallagher P.E., Brent T.P. Partial purification and characterization of 3-methyladenine-DNA glycosylase from human placenta. Biochemistry 1982, 21:6404-6409.
    • (1982) Biochemistry , vol.21 , pp. 6404-6409
    • Gallagher, P.E.1    Brent, T.P.2
  • 13
    • 0027759522 scopus 로고
    • Purification and characterization of human 3-methyladenine-DNA glycosylase
    • O'Connor T.R. Purification and characterization of human 3-methyladenine-DNA glycosylase. Nucleic Acids Res. 1993, 21:5561-5569.
    • (1993) Nucleic Acids Res. , vol.21 , pp. 5561-5569
    • O'Connor, T.R.1
  • 15
    • 0030707950 scopus 로고    scopus 로고
    • Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine
    • Hang B., Singer B., Margison G.P., Elder R.H. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:12869-12874.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 12869-12874
    • Hang, B.1    Singer, B.2    Margison, G.P.3    Elder, R.H.4
  • 16
    • 1642411206 scopus 로고    scopus 로고
    • Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase
    • O'Brien P.J., Ellenberger T. Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase. J. Biol. Chem. 2004, 279:9750-9757.
    • (2004) J. Biol. Chem. , vol.279 , pp. 9750-9757
    • O'Brien, P.J.1    Ellenberger, T.2
  • 17
    • 0017395439 scopus 로고
    • A new pathway for DNA repair in Escherichia coli
    • Samson L., Cairns J. A new pathway for DNA repair in Escherichia coli. Nature 1977, 267:281-283.
    • (1977) Nature , vol.267 , pp. 281-283
    • Samson, L.1    Cairns, J.2
  • 18
    • 0025630512 scopus 로고
    • Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage
    • Chen J., Derfler B., Samson L. Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage. EMBO J. 1990, 9:4569-4575.
    • (1990) EMBO J. , vol.9 , pp. 4569-4575
    • Chen, J.1    Derfler, B.2    Samson, L.3
  • 19
    • 0026409978 scopus 로고
    • Induction of S. cerevisiae MAG 3-methyladenine DNA glycosylase transcript levels in response to DNA damage
    • Chen J., Samson L. Induction of S. cerevisiae MAG 3-methyladenine DNA glycosylase transcript levels in response to DNA damage. Nucleic Acids Res. 1991, 19:6427-6432.
    • (1991) Nucleic Acids Res. , vol.19 , pp. 6427-6432
    • Chen, J.1    Samson, L.2
  • 21
    • 43849091461 scopus 로고    scopus 로고
    • Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag)
    • Lingaraju G.M., Kartalou M., Meira L.B., Samson L.D. Substrate specificity and sequence-dependent activity of the Saccharomyces cerevisiae 3-methyladenine DNA glycosylase (Mag). DNA repair 2008, 7:970-982.
    • (2008) DNA repair , vol.7 , pp. 970-982
    • Lingaraju, G.M.1    Kartalou, M.2    Meira, L.B.3    Samson, L.D.4
  • 22
    • 0034733694 scopus 로고    scopus 로고
    • Base excision repair in yeast and mammals
    • Memisoglu A., Samson L. Base excision repair in yeast and mammals. Mutat. Res. 2000, 451:39-51.
    • (2000) Mutat. Res. , vol.451 , pp. 39-51
    • Memisoglu, A.1    Samson, L.2
  • 23
    • 0030600463 scopus 로고    scopus 로고
    • Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe
    • Memisoglu A., Samson L. Cloning and characterization of a cDNA encoding a 3-methyladenine DNA glycosylase from the fission yeast Schizosaccharomyces pombe. Gene 1996, 177:229-235.
    • (1996) Gene , vol.177 , pp. 229-235
    • Memisoglu, A.1    Samson, L.2
  • 24
    • 0034031405 scopus 로고    scopus 로고
    • Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe
    • Memisoglu A., Samson L. Contribution of base excision repair, nucleotide excision repair, and DNA recombination to alkylation resistance of the fission yeast Schizosaccharomyces pombe. J. Bacteriol. 2000, 182:2104-2112.
    • (2000) J. Bacteriol. , vol.182 , pp. 2104-2112
    • Memisoglu, A.1    Samson, L.2
  • 25
    • 14844322912 scopus 로고    scopus 로고
    • Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe
    • Alseth I., Osman F., Korvald H., Tsaneva I., Whitby M.C., Seeberg E., Bjoras M. Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res. 2005, 33:1123-1131.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 1123-1131
    • Alseth, I.1    Osman, F.2    Korvald, H.3    Tsaneva, I.4    Whitby, M.C.5    Seeberg, E.6    Bjoras, M.7
  • 26
    • 39749187308 scopus 로고    scopus 로고
    • Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe
    • Kanamitsu K., Tanihigashi H., Tanita Y., Inatani S., Ikeda S. Involvement of 3-methyladenine DNA glycosylases Mag1p and Mag2p in base excision repair of methyl methanesulfonate-damaged DNA in the fission yeast Schizosaccharomyces pombe. Genes Genet. Syst. 2007, 82:489-494.
    • (2007) Genes Genet. Syst. , vol.82 , pp. 489-494
    • Kanamitsu, K.1    Tanihigashi, H.2    Tanita, Y.3    Inatani, S.4    Ikeda, S.5
  • 28
    • 79151477225 scopus 로고    scopus 로고
    • Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi
    • Slot J.C., Rokas A. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr. Biol. 2011, 21:134-139.
    • (2011) Curr. Biol. , vol.21 , pp. 134-139
    • Slot, J.C.1    Rokas, A.2
  • 29
    • 45949107473 scopus 로고    scopus 로고
    • Recent developments in the MAFFT multiple sequence alignment program
    • Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9:286-298.
    • (2008) Brief. Bioinform. , vol.9 , pp. 286-298
    • Katoh, K.1    Toh, H.2
  • 30
    • 33750403801 scopus 로고    scopus 로고
    • RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
    • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22:2688-2690.
    • (2006) Bioinformatics , vol.22 , pp. 2688-2690
    • Stamatakis, A.1
  • 31
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276:307-326.
    • (1997) Methods Enzymol. , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 35
    • 0030339738 scopus 로고    scopus 로고
    • AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR
    • Laskowski R.A., Rullmannn J.A., MacArthur M.W., Kaptein R., Thornton J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 1996, 8:477-486.
    • (1996) J. Biomol. NMR , vol.8 , pp. 477-486
    • Laskowski, R.A.1    Rullmannn, J.A.2    MacArthur, M.W.3    Kaptein, R.4    Thornton, J.M.5
  • 37
    • 27244433288 scopus 로고    scopus 로고
    • Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA
    • Pereira de Jesus K., Serre L., Zelwer C., Castaing B. Structural insights into abasic site for Fpg specific binding and catalysis: comparative high-resolution crystallographic studies of Fpg bound to various models of abasic site analogues-containing DNA. Nucleic Acids Res. 2005, 33:5936-5944.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 5936-5944
    • Pereira de Jesus, K.1    Serre, L.2    Zelwer, C.3    Castaing, B.4
  • 38
    • 0035900960 scopus 로고    scopus 로고
    • Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein
    • Norman D.P., Bruner S.D., Verdine G.L. Coupling of substrate recognition and catalysis by a human base-excision DNA repair protein. J. Am. Chem. Soc. 2001, 123:359-360.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 359-360
    • Norman, D.P.1    Bruner, S.D.2    Verdine, G.L.3
  • 39
    • 70350028650 scopus 로고    scopus 로고
    • Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA
    • Imamura K., Wallace S.S., Doublie S. Structural characterization of a viral NEIL1 ortholog unliganded and bound to abasic site-containing DNA. J. Biol. Chem. 2009, 284:26174-26183.
    • (2009) J. Biol. Chem. , vol.284 , pp. 26174-26183
    • Imamura, K.1    Wallace, S.S.2    Doublie, S.3
  • 40
    • 0027370887 scopus 로고
    • Function of the zinc finger in Escherichia coli Fpg protein
    • Tchou J., Michaels M.L., Miller J.H., Grollman A.P. Function of the zinc finger in Escherichia coli Fpg protein. J. Biol. Chem. 1993, 268:26738-26744.
    • (1993) J. Biol. Chem. , vol.268 , pp. 26738-26744
    • Tchou, J.1    Michaels, M.L.2    Miller, J.H.3    Grollman, A.P.4
  • 42
    • 4143149415 scopus 로고    scopus 로고
    • Site-specific DNA damage recognition by enzyme-induced base flipping
    • Stivers J.T. Site-specific DNA damage recognition by enzyme-induced base flipping. Prog. Nucleic Acid Res. Mol. Biol. 2004, 77:37-65.
    • (2004) Prog. Nucleic Acid Res. Mol. Biol. , vol.77 , pp. 37-65
    • Stivers, J.T.1
  • 43
    • 38849207616 scopus 로고    scopus 로고
    • Extrahelical damaged base recognition by DNA glycosylase enzymes
    • Stivers J.T. Extrahelical damaged base recognition by DNA glycosylase enzymes. Chemistry 2008, 14:786-793.
    • (2008) Chemistry , vol.14 , pp. 786-793
    • Stivers, J.T.1
  • 44
    • 34247555529 scopus 로고    scopus 로고
    • DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG)
    • Metz A.H., Hollis T., Eichman B.F. DNA damage recognition and repair by 3-methyladenine DNA glycosylase I (TAG). EMBO J. 2007, 26:2411-2420.
    • (2007) EMBO J. , vol.26 , pp. 2411-2420
    • Metz, A.H.1    Hollis, T.2    Eichman, B.F.3
  • 45
    • 79959191824 scopus 로고    scopus 로고
    • Early steps in the DNA base excision repair pathway of a fission yeast Schizosaccharomyces pombe
    • Kanamitsu K., Ikeda S. Early steps in the DNA base excision repair pathway of a fission yeast Schizosaccharomyces pombe. J. Nucleic Acids 2010, 2010.
    • (2010) J. Nucleic Acids , vol.2010
    • Kanamitsu, K.1    Ikeda, S.2
  • 46
    • 84858411877 scopus 로고    scopus 로고
    • AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe
    • Nilsen L., Forstrom R.J., Bjoras M., Alseth I. AP endonuclease independent repair of abasic sites in Schizosaccharomyces pombe. Nucleic Acids Res. 2012, 40:2000-2009.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 2000-2009
    • Nilsen, L.1    Forstrom, R.J.2    Bjoras, M.3    Alseth, I.4
  • 47
    • 20644453965 scopus 로고    scopus 로고
    • XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair
    • Campalans A., Marsin S., Nakabeppu Y., O'Connor T.R., Boiteux S., Radicella J.P. XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA Repair 2005, 4:826-835.
    • (2005) DNA Repair , vol.4 , pp. 826-835
    • Campalans, A.1    Marsin, S.2    Nakabeppu, Y.3    O'Connor, T.R.4    Boiteux, S.5    Radicella, J.P.6
  • 49
    • 67649592232 scopus 로고    scopus 로고
    • Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase
    • Baldwin M.R., O'Brien P.J. Human AP endonuclease 1 stimulates multiple-turnover base excision by alkyladenine DNA glycosylase. Biochemistry 2009, 48:6022-6033.
    • (2009) Biochemistry , vol.48 , pp. 6022-6033
    • Baldwin, M.R.1    O'Brien, P.J.2
  • 50
    • 57749097697 scopus 로고    scopus 로고
    • Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex
    • Fitzgerald M.E., Drohat A.C. Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex. J. Biol. Chem. 2008, 283:32680-32690.
    • (2008) J. Biol. Chem. , vol.283 , pp. 32680-32690
    • Fitzgerald, M.E.1    Drohat, A.C.2
  • 51
    • 0031473847 scopus 로고    scopus 로고
    • SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling
    • Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
    • (1997) Electrophoresis , vol.18 , pp. 2714-2723
    • Guex, N.1    Peitsch, M.C.2
  • 52
    • 0037080244 scopus 로고    scopus 로고
    • Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects
    • Rocchia W., Sridharan S., Nicholls A., Alexov E., Chiabrera A., Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects. J. Comput. Chem. 2002, 23:128-137.
    • (2002) J. Comput. Chem. , vol.23 , pp. 128-137
    • Rocchia, W.1    Sridharan, S.2    Nicholls, A.3    Alexov, E.4    Chiabrera, A.5    Honig, B.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.