메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 499-566

Algorithms for discovery of multiple Markov boundaries

Author keywords

Information equivalence; Markov boundary discovery; Variable feature selection; Violations of faithfulness

Indexed keywords

EXTENSIVE BENCHMARKING; INFORMATION EQUIVALENCE; MARKOV BOUNDARY; SELECTION PROBLEMS; STATE-OF-THE-ART ALGORITHMS; VARIABLE/FEATURE SELECTION; VIOLATIONS OF FAITHFULNESS;

EID: 84875199703     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (73)

References (65)
  • 4
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification. Part I: Algorithms and empirical evaluation
    • C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and markov blanket induction for causal discovery and feature selection for classification. part i: Algorithms and empirical evaluation. Journal of Machine Learning Research, 11:171-234, 2010a.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 5
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions
    • C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and markov blanket induction for causal discovery and feature selection for classification. part ii: Analysis and extensions. Journal of Machine Learning Research, 11:235-284, 2010b.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 7
    • 33745407892 scopus 로고    scopus 로고
    • A comparison of citation metrics to machine learning filters for the identification of high quality medline documents
    • DOI 10.1197/jamia.M2031, PII S1067502706000533
    • Y. Aphinyanaphongs, A. Statnikov, and C. F. Aliferis. A comparison of citation metrics to machine learning filters for the identification of high quality medline documents. J. Am. Med. Inform. Assoc., 13(4):446-455, 2006. (Pubitemid 43947624)
    • (2006) Journal of the American Medical Informatics Association , vol.13 , Issue.4 , pp. 446-455
    • Aphinyanaphongs, Y.1    Statnikov, A.2    Aliferis, C.F.3
  • 8
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • L. Breiman. Statistical modeling: the two cultures. Statistical Science, 16(3):199-215, 2001.
    • (2001) Statistical Science , vol.16 , Issue.3 , pp. 199-215
    • Breiman, L.1
  • 9
    • 84864480590 scopus 로고    scopus 로고
    • To feature space and back: Identifying top-weighted features in polynomial support vector machine models
    • L. E. Brown, I. Tsamardinos, and D. Hardin. To feature space and back: Identifying top-weighted features in polynomial support vector machine models. Intelligent Data Analysis, 16(4), 2012.
    • (2012) Intelligent Data Analysis , vol.16 , Issue.4
    • Brown, L.E.1    Tsamardinos, I.2    Hardin, D.3
  • 13
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • E. R. De Long, D. M. De Long, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3):837-845, 1988.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • De Long, E.R.1    De Long, D.M.2    Clarke-Pearson, D.L.3
  • 14
    • 33748962520 scopus 로고    scopus 로고
    • On the number of close-to-optimal feature sets
    • E. Dougherty and M. Brun. On the number of close-to-optimal feature sets. Cancer Informatics, 2:189-196, 2006. (Pubitemid 44440832)
    • (2006) Cancer Informatics , vol.2 , pp. 189-196
    • Dougherty, E.R.1    Brun, M.2
  • 15
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: Is there a unique set?
    • DOI 10.1093/bioinformatics/bth469
    • L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21(2):171-178, 2005. (Pubitemid 40202018)
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 16
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U. S. A., 103(15):5923-5928, 2006.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , Issue.15 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 17
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6(1889):1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.1889 , pp. 1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 19
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret. Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5:1531-1555, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 20
    • 2942598504 scopus 로고    scopus 로고
    • Variable selecion in data mining: Building a predictive model for bankruptcy
    • D. P. Foster and R. A. Stine. Variable selecion in data mining: Building a predictive model for bankruptcy. Journal of the American Statistical Association, 99(466):303-314, 2004.
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.466 , pp. 303-314
    • Foster, D.P.1    Stine, R.A.2
  • 24
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(1):1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.1 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 25
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1):389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 27
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • B. Hammer and K. Gersmann. A note on the universal approximation capability of support vector machines. Neural Processing Letters, 17(1):43-53, 2003.
    • (2003) Neural Processing Letters , vol.17 , Issue.1 , pp. 43-53
    • Hammer, B.1    Gersmann, K.2
  • 30
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 33
    • 74649083315 scopus 로고    scopus 로고
    • Ensemble gene selection by grouping for microarray data classification
    • H. Liu, L. Liu, and H. Zhang. Ensemble gene selection by grouping for microarray data classification. J. Biomed. Inform., 43(1):81-87, 2010.
    • (2010) J. Biomed. Inform. , vol.43 , Issue.1 , pp. 81-87
    • Liu, H.1    Liu, L.2    Zhang, H.3
  • 34
    • 77951255156 scopus 로고    scopus 로고
    • Ensemble gene selection for cancer classification
    • H. Liu, L. Liu, and H. Zhang. Ensemble gene selection for cancer classification. Pattern Recognition, 43(8):2763-2772, 2010b.
    • (2010) Pattern Recognition , vol.43 , Issue.8 , pp. 2763-2772
    • Liu, H.1    Liu, L.2    Zhang, H.3
  • 35
    • 0033257801 scopus 로고    scopus 로고
    • A study in causal discovery from population-based infant birth and death records
    • S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth and death records. Proceedings of the AMIA Annual Fall Symposium, 319, 1999.
    • (1999) Proceedings of the AMIA Annual Fall Symposium , vol.319
    • Mani, S.1    Cooper, G.F.2
  • 36
    • 85044705064 scopus 로고    scopus 로고
    • Causal discovery using a bayesian local causal discovery algorithm
    • S. Mani and G. F. Cooper. Causal discovery using a bayesian local causal discovery algorithm. Medinfo 2004, 11(Pt 1):731-735, 2004.
    • (2004) Medinfo 2004 , vol.11 , Issue.PART 1 , pp. 731-735
    • Mani, S.1    Cooper, G.F.2
  • 37
    • 13444249852 scopus 로고    scopus 로고
    • Prediction of cancer outcome with microarrays: A multiple random validation strategy
    • DOI 10.1016/S0140-6736(05)17866-0
    • S. Michiels, S. Koscielny, and C. Hill. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet, 365(9458):488-492, 2005. (Pubitemid 40215731)
    • (2005) Lancet , vol.365 , Issue.9458 , pp. 488-492
    • Michiels, S.1    Koscielny, S.2    Hill, C.3
  • 40
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
    • J. Peña, R. Nilsson, J. Björkegren, and J. Tegnér. Towards scalable and data efficient learning of markov boundaries. International Journal of Approximate Reasoning, 45(2):211-232, 2007. (Pubitemid 46880195)
    • (2007) International Journal of Approximate Reasoning , vol.45 , Issue.2 , pp. 211-232
    • Pena, J.M.1    Nilsson, R.2    Bjorkegren, J.3    Tegner, J.4
  • 41
    • 0003391330 scopus 로고
    • Probabilistic reasoning in intelligent systems: Networks of plausible inference
    • Morgan Kaufmann Publishers, San Mateo, California
    • J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann Publishers, San Mateo, California, 1988.
    • (1988) The Morgan Kaufmann Series in Representation and Reasoning
    • Pearl, J.1
  • 44
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the mlp model in neural networks
    • A. Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143-195, 1999.
    • (1999) Acta Numerica , vol.8 , pp. 143-195
    • Pinkus, A.1
  • 47
    • 0036392228 scopus 로고    scopus 로고
    • Ancestral graph Markov models
    • DOI 10.1214/aos/1031689015
    • T. S. Richardson and P. Spirtes. Ancestral graph markov models. Annals of Statistics, 30(4):962-1030, 2002. (Pubitemid 37095336)
    • (2002) Annals of Statistics , vol.30 , Issue.4 , pp. 962-1030
    • Richardson, T.1    Spirtes, P.2
  • 48
    • 33644507403 scopus 로고    scopus 로고
    • Multiple robust signatures for detecting lymph node metastasis in head and neck cancer
    • P. Roepman, P. Kemmeren, L. F. Wessels, P. J. Slootweg, and F. C. Holstege. Multiple robust signatures for detecting lymph node metastasis in head and neck cancer. Cancer Res., 66(4):2361-2366, 2006.
    • (2006) Cancer Res. , vol.66 , Issue.4 , pp. 2361-2366
    • Roepman, P.1    Kemmeren, P.2    Wessels, L.F.3    Slootweg, P.J.4    Holstege, F.C.5
  • 50
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
    • DOI 10.1016/S0893-6080(97)00097-X, PII S089360809700097X
    • F. Scarselli and A. Chung Tsoi. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks, 11(1):15-37, 1998. (Pubitemid 28123730)
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Chung Tsoi, Ah.2
  • 53
    • 0042923097 scopus 로고    scopus 로고
    • Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
    • DOI 10.1093/bioinformatics/btg182
    • R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics, 19(12):1484-1491, 2003. (Pubitemid 37045318)
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1484-1491
    • Somorjai, R.L.1    Dolenko, B.2    Baumgartner, R.3
  • 55
    • 77955493761 scopus 로고    scopus 로고
    • Analysis and computational dissection of molecular signature multiplicity
    • A. Statnikov and C. F. Aliferis. Analysis and computational dissection of molecular signature multiplicity. PLoS Computational Biology, 6(5):e1000790, 2010a.
    • (2010) PLoS Computational Biology , vol.6 , Issue.5
    • Statnikov, A.1    Aliferis, C.F.2
  • 57
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • DOI 10.1093/bioinformatics/bti033
    • A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643, 2005. (Pubitemid 40424789)
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 58
    • 84908316392 scopus 로고    scopus 로고
    • Causal explorer: A matlab library of algorithms for causal discovery and variable selection for classification
    • Guyon, I. and Aliferis, C. F. and Cooper, G. F. and Elisseeff, A. and Pellet, J. P. and Spirtes, P. and Statnikov, A. Microtome Publishing, Bookline, Massachusetts
    • A. Statnikov, I. Tsamardinos, L. E. Brown, and C. F. Aliferis. Causal Explorer: A Matlab Library of Algorithms for Causal Discovery and Variable Selection for Classification. In Challenges in Machine Learning. Volume 2: Causation and Prediction Challenge. Edited by Guyon, I. and Aliferis, C. F. and Cooper, G. F. and Elisseeff, A. and Pellet, J. P. and Spirtes, P. and Statnikov, A. Microtome Publishing, Bookline, Massachusetts, 2010.
    • (2010) Challenges in Machine Learning. Volume 2: Causation and Prediction Challenge
    • Statnikov, A.1    Tsamardinos, I.2    Brown, L.E.3    Aliferis, C.F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.