-
4
-
-
76749137632
-
Local causal and markov blanket induction for causal discovery and feature selection for classification. Part I: Algorithms and empirical evaluation
-
C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and markov blanket induction for causal discovery and feature selection for classification. part i: Algorithms and empirical evaluation. Journal of Machine Learning Research, 11:171-234, 2010a.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
5
-
-
76749122843
-
Local causal and markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions
-
C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and markov blanket induction for causal discovery and feature selection for classification. part ii: Analysis and extensions. Journal of Machine Learning Research, 11:235-284, 2010b.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 235-284
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
7
-
-
33745407892
-
A comparison of citation metrics to machine learning filters for the identification of high quality medline documents
-
DOI 10.1197/jamia.M2031, PII S1067502706000533
-
Y. Aphinyanaphongs, A. Statnikov, and C. F. Aliferis. A comparison of citation metrics to machine learning filters for the identification of high quality medline documents. J. Am. Med. Inform. Assoc., 13(4):446-455, 2006. (Pubitemid 43947624)
-
(2006)
Journal of the American Medical Informatics Association
, vol.13
, Issue.4
, pp. 446-455
-
-
Aphinyanaphongs, Y.1
Statnikov, A.2
Aliferis, C.F.3
-
8
-
-
0000245743
-
Statistical modeling: The two cultures
-
L. Breiman. Statistical modeling: the two cultures. Statistical Science, 16(3):199-215, 2001.
-
(2001)
Statistical Science
, vol.16
, Issue.3
, pp. 199-215
-
-
Breiman, L.1
-
9
-
-
84864480590
-
To feature space and back: Identifying top-weighted features in polynomial support vector machine models
-
L. E. Brown, I. Tsamardinos, and D. Hardin. To feature space and back: Identifying top-weighted features in polynomial support vector machine models. Intelligent Data Analysis, 16(4), 2012.
-
(2012)
Intelligent Data Analysis
, vol.16
, Issue.4
-
-
Brown, L.E.1
Tsamardinos, I.2
Hardin, D.3
-
10
-
-
2942581832
-
High-resolution serum proteomic features for ovarian cancer detection
-
DOI 10.1677/erc.0.0110163
-
T. P. Conrads, V. A. Fusaro, S. Ross, D. Johann, V. Rajapakse, B. A. Hitt, S. M. Steinberg, E. C. Kohn, D. A. Fishman, G. Whitely, J. C. Barrett, L. A. Liotta, III Petricoin, E. F., and T. D. Veenstra. High-resolution serum proteomic features for ovarian cancer detection. Endocr. Relat Cancer, 11(2):163-178, 2004. (Pubitemid 38832824)
-
(2004)
Endocrine-Related Cancer
, vol.11
, Issue.2
, pp. 163-178
-
-
Conrads, T.P.1
Fusaro, V.A.2
Ross, S.3
Johann, D.4
Rajapakse, V.5
Hitt, B.A.6
Steinberg, S.M.7
Kohn, E.C.8
Fishman, D.A.9
Whiteley, G.10
Barrett, J.C.11
Liotta, L.A.12
Petricoin III, E.F.13
Veenstra, T.D.14
-
13
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
E. R. De Long, D. M. De Long, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3):837-845, 1988.
-
(1988)
Biometrics
, vol.44
, Issue.3
, pp. 837-845
-
-
De Long, E.R.1
De Long, D.M.2
Clarke-Pearson, D.L.3
-
14
-
-
33748962520
-
On the number of close-to-optimal feature sets
-
E. Dougherty and M. Brun. On the number of close-to-optimal feature sets. Cancer Informatics, 2:189-196, 2006. (Pubitemid 44440832)
-
(2006)
Cancer Informatics
, vol.2
, pp. 189-196
-
-
Dougherty, E.R.1
Brun, M.2
-
15
-
-
13444282534
-
Outcome signature genes in breast cancer: Is there a unique set?
-
DOI 10.1093/bioinformatics/bth469
-
L. Ein-Dor, I. Kela, G. Getz, D. Givol, and E. Domany. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21(2):171-178, 2005. (Pubitemid 40202018)
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 171-178
-
-
Ein-Dor, L.1
Kela, I.2
Getz, G.3
Givol, D.4
Domany, E.5
-
16
-
-
33645825183
-
Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
-
L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U. S. A., 103(15):5923-5928, 2006.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, Issue.15
, pp. 5923-5928
-
-
Ein-Dor, L.1
Zuk, O.2
Domany, E.3
-
17
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6(1889):1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.1889
, pp. 1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
19
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Fleuret. Fast binary feature selection with conditional mutual information. Journal of Machine Learning Research, 5:1531-1555, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
20
-
-
2942598504
-
Variable selecion in data mining: Building a predictive model for bankruptcy
-
D. P. Foster and R. A. Stine. Variable selecion in data mining: Building a predictive model for bankruptcy. Journal of the American Statistical Association, 99(466):303-314, 2004.
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.466
, pp. 303-314
-
-
Foster, D.P.1
Stine, R.A.2
-
24
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(1):1157-1182, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.1
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
25
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1):389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
26
-
-
38149003435
-
Feature extraction: Foundations and applications
-
Springer-Verlag, Berlin
-
I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Foundations and Applications. Studies in fuzziness and soft computing. Springer-Verlag, Berlin, 2006.
-
(2006)
Studies in Fuzziness and Soft Computing
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
27
-
-
0037312471
-
A note on the universal approximation capability of support vector machines
-
B. Hammer and K. Gersmann. A note on the universal approximation capability of support vector machines. Neural Processing Letters, 17(1):43-53, 2003.
-
(2003)
Neural Processing Letters
, vol.17
, Issue.1
, pp. 43-53
-
-
Hammer, B.1
Gersmann, K.2
-
28
-
-
0003801421
-
-
Wiley, New York, NY, USA
-
M. Hollander and D. Wolfe. Nonparametric statistical methods, volume 2nd of Wiley Series in Probability and Statistics. Wiley, New York, NY, USA, 1999.
-
(1999)
Nonparametric Statistical Methods, Volume 2nd of Wiley Series in Probability and Statistics
-
-
Hollander, M.1
Wolfe, D.2
-
30
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
33
-
-
74649083315
-
Ensemble gene selection by grouping for microarray data classification
-
H. Liu, L. Liu, and H. Zhang. Ensemble gene selection by grouping for microarray data classification. J. Biomed. Inform., 43(1):81-87, 2010.
-
(2010)
J. Biomed. Inform.
, vol.43
, Issue.1
, pp. 81-87
-
-
Liu, H.1
Liu, L.2
Zhang, H.3
-
34
-
-
77951255156
-
Ensemble gene selection for cancer classification
-
H. Liu, L. Liu, and H. Zhang. Ensemble gene selection for cancer classification. Pattern Recognition, 43(8):2763-2772, 2010b.
-
(2010)
Pattern Recognition
, vol.43
, Issue.8
, pp. 2763-2772
-
-
Liu, H.1
Liu, L.2
Zhang, H.3
-
35
-
-
0033257801
-
A study in causal discovery from population-based infant birth and death records
-
S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth and death records. Proceedings of the AMIA Annual Fall Symposium, 319, 1999.
-
(1999)
Proceedings of the AMIA Annual Fall Symposium
, vol.319
-
-
Mani, S.1
Cooper, G.F.2
-
36
-
-
85044705064
-
Causal discovery using a bayesian local causal discovery algorithm
-
S. Mani and G. F. Cooper. Causal discovery using a bayesian local causal discovery algorithm. Medinfo 2004, 11(Pt 1):731-735, 2004.
-
(2004)
Medinfo 2004
, vol.11
, Issue.PART 1
, pp. 731-735
-
-
Mani, S.1
Cooper, G.F.2
-
37
-
-
13444249852
-
Prediction of cancer outcome with microarrays: A multiple random validation strategy
-
DOI 10.1016/S0140-6736(05)17866-0
-
S. Michiels, S. Koscielny, and C. Hill. Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet, 365(9458):488-492, 2005. (Pubitemid 40215731)
-
(2005)
Lancet
, vol.365
, Issue.9458
, pp. 488-492
-
-
Michiels, S.1
Koscielny, S.2
Hill, C.3
-
38
-
-
21144462902
-
Classification of a large microarray data set: Algorithm comparison and analysis of drug signatures
-
DOI 10.1101/gr.2807605
-
G. Natsoulis, Ghaoui L. El, G. R. Lanckriet, A. M. Tolley, F. Leroy, S. Dunlea, B. P. Eynon, C. I. Pearson, S. Tugendreich, and K. Jarnagin. Classification of a large microarray data set: algorithm comparison and analysis of drug signatures. Genome Res., 15(5):724-736, 2005. (Pubitemid 41043643)
-
(2005)
Genome Research
, vol.15
, Issue.5
, pp. 724-736
-
-
Natsoulis, G.1
El Ghaoui, L.2
Lanckriet, G.R.G.3
Tolley, A.M.4
Leroy, F.5
Dunlea, S.6
Eynon, B.P.7
Pearson, C.I.8
Tugendreich, S.9
Jarnagin, K.10
-
40
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
-
J. Peña, R. Nilsson, J. Björkegren, and J. Tegnér. Towards scalable and data efficient learning of markov boundaries. International Journal of Approximate Reasoning, 45(2):211-232, 2007. (Pubitemid 46880195)
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Pena, J.M.1
Nilsson, R.2
Bjorkegren, J.3
Tegner, J.4
-
41
-
-
0003391330
-
Probabilistic reasoning in intelligent systems: Networks of plausible inference
-
Morgan Kaufmann Publishers, San Mateo, California
-
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. The Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann Publishers, San Mateo, California, 1988.
-
(1988)
The Morgan Kaufmann Series in Representation and Reasoning
-
-
Pearl, J.1
-
42
-
-
0003398906
-
-
volume 2nd. Cambridge University Press, Cambridge, U. K
-
J. Pearl. Causality: Models, Reasoning, and Inference, volume 2nd. Cambridge University Press, Cambridge, U. K, 2009.
-
(2009)
Causality: Models, Reasoning, and Inference
-
-
Pearl, J.1
-
44
-
-
85011438572
-
Approximation theory of the mlp model in neural networks
-
A. Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143-195, 1999.
-
(1999)
Acta Numerica
, vol.8
, pp. 143-195
-
-
Pinkus, A.1
-
47
-
-
0036392228
-
Ancestral graph Markov models
-
DOI 10.1214/aos/1031689015
-
T. S. Richardson and P. Spirtes. Ancestral graph markov models. Annals of Statistics, 30(4):962-1030, 2002. (Pubitemid 37095336)
-
(2002)
Annals of Statistics
, vol.30
, Issue.4
, pp. 962-1030
-
-
Richardson, T.1
Spirtes, P.2
-
48
-
-
33644507403
-
Multiple robust signatures for detecting lymph node metastasis in head and neck cancer
-
P. Roepman, P. Kemmeren, L. F. Wessels, P. J. Slootweg, and F. C. Holstege. Multiple robust signatures for detecting lymph node metastasis in head and neck cancer. Cancer Res., 66(4):2361-2366, 2006.
-
(2006)
Cancer Res.
, vol.66
, Issue.4
, pp. 2361-2366
-
-
Roepman, P.1
Kemmeren, P.2
Wessels, L.F.3
Slootweg, P.J.4
Holstege, F.C.5
-
49
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
-
DOI 10.1056/NEJMoa012914
-
A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K. Muller-Hermelink, E. B. Smeland, J. M. Giltnane, E. M. Hurt, H. Zhao, L. Averett, L. Yang, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, J. Powell, P. L. Duffey, D. L. Longo, T. C. Greiner, D. D. Weisenburger, W. G. Sanger, B. J. Dave, J. C. Lynch, J. Vose, J. O. Armitage, E. Montserrat, A. Lopez-Guillermo, T. M. Grogan, T. P. Miller, M. Le Blanc, G. Ott, S. Kvaloy, J. Delabie, H. Holte, P. Krajci, T. Stokke, and L. M. Staudt. The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N. Engl. J. Med., 346(25):1937-1947, 2002. (Pubitemid 34651353)
-
(2002)
New England Journal of Medicine
, vol.346
, Issue.25
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyne, R.D.7
Konrad Muller-Hermelink, H.8
Smeland, E.B.9
Giltnane, J.M.10
Hurt, E.M.11
Zhao, H.12
Averett, L.13
Yang, L.14
Wilson, W.H.15
Jaffe, E.S.16
Simon, R.17
Klausner, R.D.18
Powell, J.19
Duffey, P.L.20
Longo, D.L.21
Greiner, T.C.22
Weisenburger, D.D.23
Sanger, W.G.24
Dave, B.J.25
Lynch, J.C.26
Vose, J.27
Armitage, J.O.28
Montserrat, E.29
Lopez-Guillermo, A.30
Grogan, T.M.31
Miller, T.P.32
Leblanc, M.33
Ott, G.34
Kvaloy, S.35
Delabie, J.36
Holte, H.37
Krajci, P.38
Stokke, T.39
Staudt, L.M.40
more..
-
50
-
-
0345195977
-
Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results
-
DOI 10.1016/S0893-6080(97)00097-X, PII S089360809700097X
-
F. Scarselli and A. Chung Tsoi. Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results. Neural Networks, 11(1):15-37, 1998. (Pubitemid 28123730)
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 15-37
-
-
Scarselli, F.1
Chung Tsoi, Ah.2
-
51
-
-
0003798627
-
-
MIT Press, Cambridge, Mass
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola. Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge, Mass, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
-
-
Schölkopf, B.1
Burges, C.J.C.2
Smola, A.J.3
-
53
-
-
0042923097
-
Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: Curses, caveats, cautions
-
DOI 10.1093/bioinformatics/btg182
-
R. L. Somorjai, B. Dolenko, and R. Baumgartner. Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics, 19(12):1484-1491, 2003. (Pubitemid 37045318)
-
(2003)
Bioinformatics
, vol.19
, Issue.12
, pp. 1484-1491
-
-
Somorjai, R.L.1
Dolenko, B.2
Baumgartner, R.3
-
54
-
-
2442577254
-
-
MIT Press, Cambridge, Mass
-
P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search, volume 2nd of Adaptive computation and machine learning. MIT Press, Cambridge, Mass, 2000.
-
(2000)
Causation, Prediction, and Search, Volume 2nd of Adaptive Computation and Machine Learning
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
55
-
-
77955493761
-
Analysis and computational dissection of molecular signature multiplicity
-
A. Statnikov and C. F. Aliferis. Analysis and computational dissection of molecular signature multiplicity. PLoS Computational Biology, 6(5):e1000790, 2010a.
-
(2010)
PLoS Computational Biology
, vol.6
, Issue.5
-
-
Statnikov, A.1
Aliferis, C.F.2
-
57
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
DOI 10.1093/bioinformatics/bti033
-
A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643, 2005. (Pubitemid 40424789)
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 631-643
-
-
Statnikov, A.1
Aliferis, C.F.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
58
-
-
84908316392
-
Causal explorer: A matlab library of algorithms for causal discovery and variable selection for classification
-
Guyon, I. and Aliferis, C. F. and Cooper, G. F. and Elisseeff, A. and Pellet, J. P. and Spirtes, P. and Statnikov, A. Microtome Publishing, Bookline, Massachusetts
-
A. Statnikov, I. Tsamardinos, L. E. Brown, and C. F. Aliferis. Causal Explorer: A Matlab Library of Algorithms for Causal Discovery and Variable Selection for Classification. In Challenges in Machine Learning. Volume 2: Causation and Prediction Challenge. Edited by Guyon, I. and Aliferis, C. F. and Cooper, G. F. and Elisseeff, A. and Pellet, J. P. and Spirtes, P. and Statnikov, A. Microtome Publishing, Bookline, Massachusetts, 2010.
-
(2010)
Challenges in Machine Learning. Volume 2: Causation and Prediction Challenge
-
-
Statnikov, A.1
Tsamardinos, I.2
Brown, L.E.3
Aliferis, C.F.4
-
64
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
DOI 10.1016/S0140-6736(05)17947-1
-
Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans, M. E. Meijer-Van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins, and J. A. Foekens. Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460):671-679, 2005. (Pubitemid 40260888)
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.M.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-Van Gelder, M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.J.J.12
Atkins, D.13
Foekens, J.A.14
-
65
-
-
0003932630
-
-
M. Kaufmann Publishers, San Mateo, Calif
-
S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. M. Kaufmann Publishers, San Mateo, Calif, 1991.
-
(1991)
Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems
-
-
Weiss, S.M.1
Kulikowski, C.A.2
|