메뉴 건너뛰기




Volumn 113, Issue 9, 2013, Pages

Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION CO-EFFICIENT; ACOUSTIC PHONONS; ALTERNATIVE MATERIALS; ARMCHAIR GRAPHENE NANORIBBONS; DETECTIVITY; EDGE DEFORMATION; GATE VOLTAGES; INFRARED PHOTODETECTOR; INTER-BAND TRANSITION; INTERBAND TUNNELING; IR PHOTODETECTORS; LINE EDGE ROUGHNESS; RESPONSIVITY; SINGLE ELECTRON; SINGLE LAYER; STRUCTURAL PARAMETER; THERMOGENERATION; TIGHT BINDING MODEL; TUNABLE ENERGY GAPS;

EID: 84874789360     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4794494     Document Type: Article
Times cited : (13)

References (32)
  • 2
    • 78249269438 scopus 로고    scopus 로고
    • Numerical optimization of an ambient temperature photoelectromagnetic detector for middle and far infrared spectral regions
    • 10.1016/j.infrared.2010.07.009
    • R. Hazrati, S. Shojaei, M. Karimi, and M. Kalafi, " Numerical optimization of an ambient temperature photoelectromagnetic detector for middle and far infrared spectral regions.," Infrared Phys. Technol. 53, 419-424 (2010). 10.1016/j.infrared.2010.07.009
    • (2010) Infrared Phys. Technol. , vol.53 , pp. 419-424
    • Hazrati, R.1    Shojaei, S.2    Karimi, M.3    Kalafi, M.4
  • 3
    • 33846588916 scopus 로고    scopus 로고
    • Numerical optimization of an extracted HgCdTe IR-photodiodes for 10.6-μm spectral region operating at room temperature
    • 10.1016/j.mejo.2006.11.013
    • M. Karimi, M. Kalafi, and A. Asgari, " Numerical optimization of an extracted HgCdTe IR-photodiodes for 10.6-μm spectral region operating at room temperature.," Microelectron. J. 38, 216-221 (2007). 10.1016/j.mejo.2006. 11.013
    • (2007) Microelectron. J. , vol.38 , pp. 216-221
    • Karimi, M.1    Kalafi, M.2    Asgari, A.3
  • 4
    • 84886947587 scopus 로고    scopus 로고
    • High performances III-nitride quantum dot infrared photodetector operating at room temperature
    • 10.1364/OE.18.014604
    • A. Asgari and S. Razi, " High performances III-nitride quantum dot infrared photodetector operating at room temperature.," Opt. Express 18, 14604-14615 (2010). 10.1364/OE.18.014604
    • (2010) Opt. Express , vol.18 , pp. 14604-14615
    • Asgari, A.1    Razi, S.2
  • 5
    • 57849148498 scopus 로고    scopus 로고
    • 1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures
    • 10.1016/j.mejo.2008.06.087
    • 1-xN/GaN multi-quantum-well ultraviolet detector based on p-i-n heterostructures.," Microelectron. J. 40, 104-107 (2009). 10.1016/j.mejo.2008.06.087
    • (2009) Microelectron. J. , vol.40 , pp. 104-107
    • Asgari, A.1    Ahmadi, E.2    Kalafi, M.3
  • 6
    • 60749125537 scopus 로고    scopus 로고
    • Epitaxial graphene: How silicon leaves the scene
    • 10.1038/nmat2382
    • K. V. Emtsev, " Epitaxial graphene: How silicon leaves the scene.," Nat. Mater. 8, 203 (2009). 10.1038/nmat2382
    • (2009) Nat. Mater. , vol.8 , pp. 203
    • Emtsev, K.V.1
  • 7
    • 36149007340 scopus 로고
    • The band theory of graphite
    • 10.1103/PhysRev.71.622
    • P. R. Wallace, " The band theory of graphite.," Phys. Rev. 71, 622 (1947). 10.1103/PhysRev.71.622
    • (1947) Phys. Rev. , vol.71 , pp. 622
    • Wallace, P.R.1
  • 8
    • 33751110207 scopus 로고    scopus 로고
    • Half-metallic graphene nanoribbons
    • 10.1038/nature05180
    • Y. W. Son, M. L. Cohen, and S. G. Louie, " Half-metallic graphene nanoribbons.," Nature 444, 347-349 (2006). 10.1038/nature05180
    • (2006) Nature , vol.444 , pp. 347-349
    • Son, Y.W.1    Cohen, M.L.2    Louie, S.G.3
  • 10
    • 80455173890 scopus 로고    scopus 로고
    • Graphene plasmonics for tunable terahertz metamaterials
    • 10.1038/nnano.2011.146
    • L. Ju, " Graphene plasmonics for tunable terahertz metamaterials.," Nat. Nanotechnol. 6, 630-634 (2011). 10.1038/nnano.2011. 146
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 630-634
    • Ju, L.1
  • 11
    • 77950476955 scopus 로고    scopus 로고
    • Semianalytical model of bilayer-graphene field-effect transistor
    • 10.1109/TED.2009.2033419
    • M. Cheli, G. Fiori, and G. Iannaccone, " Semianalytical model of bilayer-graphene field-effect transistor.," IEEE Trans. Electron. devices 56, 2979-2986 (2009). 10.1109/TED.2009.2033419
    • (2009) IEEE Trans. Electron. Devices , vol.56 , pp. 2979-2986
    • Cheli, M.1    Fiori, G.2    Iannaccone, G.3
  • 12
    • 82455212389 scopus 로고    scopus 로고
    • Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons
    • 10.1002/adma.201101414
    • B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, and C. N. R. Rao, " Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons.," Adv. Mater. 23, 5419-5424 (2011). 10.1002/adma.201101414
    • (2011) Adv. Mater. , vol.23 , pp. 5419-5424
    • Chitara, B.1    Panchakarla, L.S.2    Krupanidhi, S.B.3    Rao, C.N.R.4
  • 13
    • 62549165450 scopus 로고    scopus 로고
    • Graphene tunneling transit-time terahertz oscillator based on electrically induced p-i-n Junction
    • 10.1143/APEX.2.034503
    • V. Ryzhii, M. Ryzhii, V. Mitin, and M. S. Shur, " Graphene tunneling transit-time terahertz oscillator based on electrically induced p-i-n Junction.," Appl. Phys. Express 2, 034503 (2009). 10.1143/APEX.2.034503
    • (2009) Appl. Phys. Express , vol.2 , pp. 034503
    • Ryzhii, V.1    Ryzhii, M.2    Mitin, V.3    Shur, M.S.4
  • 14
    • 67650142125 scopus 로고    scopus 로고
    • Graphene bilayer field-effect phototransistor for Terahertz and infrared detection
    • 10.1103/PhysRevB.79.245311
    • V. Ryzhii and M. Ryzhii, " Graphene bilayer field-effect phototransistor for Terahertz and infrared detection.," Phys. Rev. B 79, 245311 (2009). 10.1103/PhysRevB.79.245311
    • (2009) Phys. Rev. B , vol.79 , pp. 245311
    • Ryzhii, V.1    Ryzhii, M.2
  • 15
    • 65449147515 scopus 로고    scopus 로고
    • Photocurrent imaging and efficient photon detection in a graphene transistor
    • 10.1021/nl8033812
    • F. Xia, " Photocurrent imaging and efficient photon detection in a graphene transistor.," Nano Lett. 9, 1039-1044 (2009). 10.1021/nl8033812
    • (2009) Nano Lett. , vol.9 , pp. 1039-1044
    • Xia, F.1
  • 16
    • 68949114592 scopus 로고    scopus 로고
    • Role of contacts in graphene transistors: A scanning photocurrent study
    • 10.1103/PhysRevB.79.245430
    • T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, " Role of contacts in graphene transistors: A scanning photocurrent study.," Phys. Rev. B 79, 245430 (2009). 10.1103/PhysRevB.79.245430
    • (2009) Phys. Rev. B , vol.79 , pp. 245430
    • Mueller, T.1    Xia, F.2    Freitag, M.3    Tsang, J.4    Avouris, Ph.5
  • 17
    • 77951835400 scopus 로고    scopus 로고
    • Graphene photodetectors for high-speed optical communications
    • 10.1038/nphoton.2010.40
    • T. Mueller, F. Xia, and P. Avouris, " Graphene photodetectors for high-speed optical communications.," Nat. Photonics 4, 297-301 (2010). 10.1038/nphoton.2010.40
    • (2010) Nat. Photonics , vol.4 , pp. 297-301
    • Mueller, T.1    Xia, F.2    Avouris, P.3
  • 18
    • 77957591897 scopus 로고    scopus 로고
    • Electrically induced n-i-p junctions in multiple graphene layer structures
    • 10.1103/PhysRevB.82.075419
    • M. Ryzhii and V. Ryzhii, " Electrically induced n-i-p junctions in multiple graphene layer structures.," Phys. Rev. B 82, 075419 (2010). 10.1103/PhysRevB.82.075419
    • (2010) Phys. Rev. B , vol.82 , pp. 075419
    • Ryzhii, M.1    Ryzhii, V.2
  • 19
    • 77952487360 scopus 로고    scopus 로고
    • Graphene Nanoribbon Phototransistor: Proposal and Analysis
    • 10.1143/JJAP.48.04C144
    • V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, and T. Otsuji, " Graphene Nanoribbon Phototransistor: Proposal and Analysis.," Jpn. J. Appl. Phys. 48, 04C144 (2009). 10.1143/JJAP.48.04C144
    • (2009) Jpn. J. Appl. Phys. , vol.48
    • Ryzhii, V.1    Ryzhii, M.2    Ryabova, N.3    Mitin, V.4    Otsuji, T.5
  • 20
    • 84865695820 scopus 로고    scopus 로고
    • Theoretical calculation of optical absorption spectrum for armchair graphene nanoribbon
    • in, Nakhon Phanom, Thailand.
    • E. Ahmadi and A. Asgari, " Theoretical calculation of optical absorption spectrum for armchair graphene nanoribbon.," in Proceeding of I-SEEC Conference, Nakhon Phanom, Thailand, 2010.
    • (2010) Proceeding of I-SEEC Conference
    • Ahmadi, E.1    Asgari, A.2
  • 21
    • 80052544327 scopus 로고    scopus 로고
    • A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification
    • 10.1063/1.3633103
    • W. D. Hu, X. S. Chen, Z. H. Ye, and W. Lu, " A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification.," Appl. Phys. Lett. 99, 091101 (2011). 10.1063/1.3633103
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 091101
    • Hu, W.D.1    Chen, X.S.2    Ye, Z.H.3    Lu, W.4
  • 22
    • 77954623566 scopus 로고    scopus 로고
    • Accurate simulation of temperature-dependent dark current in HgCdTe infrared detectors assisted by analytical modeling
    • 10.1007/s11664-010-1121-8
    • W. D. Hu, X. S. Chen, Z. H. Ye, J. Z. F. Yin, C. Lin, Z. Li, and W. Lu, " Accurate simulation of temperature-dependent dark current in HgCdTe infrared detectors assisted by analytical modeling.," J. Electron. Mater. 39, 981-985 (2010). 10.1007/s11664-010-1121-8
    • (2010) J. Electron. Mater. , vol.39 , pp. 981-985
    • Hu, W.D.1    Chen, X.S.2    Ye, Z.H.3    Yin, J.Z.F.4    Lin, C.5    Li, Z.6    Lu, W.7
  • 23
    • 67249129206 scopus 로고    scopus 로고
    • Third generation infrared photodetector arrays
    • 10.1063/1.3099572
    • A. Rogalski, J. Antoszewski, and L. Faraone, " Third generation infrared photodetector arrays.," J. Appl. Phys. 105, 91101 (2009). 10.1063/1.3099572
    • (2009) J. Appl. Phys. , vol.105 , pp. 91101
    • Rogalski, A.1    Antoszewski, J.2    Faraone, L.3
  • 24
    • 61949472647 scopus 로고    scopus 로고
    • Slow imbalance relaxation and thermoelectric transport in graphene
    • 10.1103/PhysRevB.79.085415
    • M. S. Foster and I. L. Aleiner, " Slow imbalance relaxation and thermoelectric transport in graphene.," Phys. Rev. B 79, 85415 (2009). 10.1103/PhysRevB.79.085415
    • (2009) Phys. Rev. B , vol.79 , pp. 85415
    • Foster, M.S.1    Aleiner, I.L.2
  • 25
    • 79955031859 scopus 로고    scopus 로고
    • Terahertz and infrared detectors based on graphene structures
    • 10.1016/j.infrared.2010.12.034
    • V. Ryzhii, M. Ryzhii, N. Ryabova, V. Mitin, and T. Otsuji, " Terahertz and infrared detectors based on graphene structures.," J. Infrared Phys. Technol. 54, 302-305 (2011). 10.1016/j.infrared.2010.12.034
    • (2011) J. Infrared Phys. Technol. , vol.54 , pp. 302-305
    • Ryzhii, V.1    Ryzhii, M.2    Ryabova, N.3    Mitin, V.4    Otsuji, T.5
  • 26
    • 84864508528 scopus 로고    scopus 로고
    • The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p-i-n structure
    • 10.1016/j.spmi.2012.06.014
    • E. Ahmadi, A. Asgari, and K. Ahmadiniar, " The optical responsivity in IR-photodetector based on armchair graphene nanoribbons with p-i-n structure.," Superlattices Microstruct. 52, 605 (2012). 10.1016/j.spmi.2012.06.014
    • (2012) Superlattices Microstruct. , vol.52 , pp. 605
    • Ahmadi, E.1    Asgari, A.2    Ahmadiniar, K.3
  • 27
    • 84855340722 scopus 로고    scopus 로고
    • Theoretical calculation of excitonic binding energies and optical absorption spectra for Armchair Graphene nanoribbons
    • 10.1140/epjb/e2011-20491-4
    • L. Mohammadzadeh, A. Asgari, S. Shojaei, and E. Ahmadi, " Theoretical calculation of excitonic binding energies and optical absorption spectra for Armchair Graphene nanoribbons.," Eur. Phys. J. B 84, 249-253 (2011). 10.1140/epjb/e2011-20491-4
    • (2011) Eur. Phys. J. B , vol.84 , pp. 249-253
    • Mohammadzadeh, L.1    Asgari, A.2    Shojaei, S.3    Ahmadi, E.4
  • 28
    • 34447618643 scopus 로고    scopus 로고
    • Selection rule for the optical absorption of graphene nanoribbons
    • 10.1103/PhysRevB.76.045418
    • H. Hsu and L. E. Reicl, " Selection rule for the optical absorption of graphene nanoribbons.," Phys. Rev. B 76, 045418 (2007). 10.1103/PhysRevB.76.045418
    • (2007) Phys. Rev. B , vol.76 , pp. 045418
    • Hsu, H.1    Reicl, L.E.2
  • 29
    • 18344413260 scopus 로고    scopus 로고
    • Attosecond laser pulse synthesis using bichromatic high-order harmonic generation
    • 10.1103/PhysRevB.68.205101
    • A. K. Gupta, O. E. Alon, and N. Moiseyev, " Attosecond laser pulse synthesis using bichromatic high-order harmonic generation.," Phys. Rev. B 68, 205101 (2003). 10.1103/PhysRevB.68.205101
    • (2003) Phys. Rev. B , vol.68 , pp. 205101
    • Gupta, A.K.1    Alon, O.E.2    Moiseyev, N.3
  • 30
    • 84874772338 scopus 로고    scopus 로고
    • Carrier generation and recombination rate in armchair graphene nanoribbons
    • 10.1140/epjb/e2012-30469-3
    • E. Ahmadi and A. Asgari, " Carrier generation and recombination rate in armchair graphene nanoribbons.," Eur. Phys. J. B 86, 19 (2013). 10.1140/epjb/e2012-30469-3
    • (2013) Eur. Phys. J. B , vol.86 , pp. 19
    • Ahmadi, E.1    Asgari, A.2
  • 31
    • 33746052437 scopus 로고    scopus 로고
    • Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene
    • 10.1103/PhysRevB.74.041403
    • Vadim V. Cheianov and Vladimir I. Fal'ko, " Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene.," Phys. Rev. B 74, 041403 (2006). 10.1103/PhysRevB.74.041403
    • (2006) Phys. Rev. B , vol.74 , pp. 041403
    • Cheianov, V.V.1    Fal'Ko, V.I.2
  • 32
    • 41449114440 scopus 로고    scopus 로고
    • Nonlinear screening and ballistic transport in a graphene p-n junction
    • 10.1103/PhysRevLett.100.116804
    • L. M. Zhang and M. M. Fogler, " Nonlinear screening and ballistic transport in a graphene p-n junction.," Phys. Rev. Lett. 100, 116804 (2008). 10.1103/PhysRevLett.100.116804
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 116804
    • Zhang, L.M.1    Fogler, M.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.