메뉴 건너뛰기




Volumn , Issue , 2012, Pages 147-154

Estimation of effect size posterior using model averaging over Bayesian network structures and parameters

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION FIELDS; ARTIFICIAL DATA; BAYESIAN; BAYESIAN APPROACHES; BAYESIAN MODEL AVERAGING; BAYESIAN NETWORK STRUCTURE; CONFIDENCE INTERVAL; EFFECT SIZE; FEATURE SUBSET; FREQUENTIST; HIGH PROBABILITY; MODEL AVERAGING; MONTE CARLO SIMULATION METHODS; MULTIPLE HYPOTHESIS TESTING; POSTERIOR DISTRIBUTIONS; STATISTICAL FRAMEWORK;

EID: 84874746433     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (23)
  • 1
    • 21244467165 scopus 로고    scopus 로고
    • Learning bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, L. M. de Campos, and J. G. Castel-lano. 2005. Learning bayesian network classifiers: searching in a space of partially directed acyclic graphs. Machine Learning, 59:213-235.
    • (2005) Machine Learning , vol.59 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castel-Lano, J.G.3
  • 4
    • 70350001466 scopus 로고    scopus 로고
    • A bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction
    • P. Antal, A. Millinghoffer, G. Hullâm, Cs. Szalai, and A. Falus. 2008b. A bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction. JMLR Proceeding, 4:74-89.
    • (2008) JMLR Proceeding , vol.4 , pp. 74-89
    • Antal, P.1    Millinghoffer, A.2    Hullâm, G.3    Szalai, Cs.4    Falus, A.5
  • 5
    • 33748804424 scopus 로고    scopus 로고
    • A tutorial on statistical methods for population association studies
    • D. J. Balding. 2006. A tutorial on statistical methods for population association studies. Nature, 7:781-91.
    • (2006) Nature , vol.7 , pp. 781-791
    • Balding, D.J.1
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 53849137330 scopus 로고    scopus 로고
    • Bayesian estimation of log odds ratios from rxc and 2x2xk contingency tables
    • H. Demirhan and C. Hamurkaroglu. 2008. Bayesian estimation of log odds ratios from rxc and 2x2xk contingency tables. Statistica Neerlandica, 62(4):405-424.
    • (2008) Statistica Neerlandica , vol.62 , Issue.4 , pp. 405-424
    • Demirhan, H.1    Hamurkaroglu, C.2
  • 9
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • N. Friedman and D. Koller. 2003. Being Bayesian about network structure. Mach Learn, 50:95-125.
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 10
    • 84857925423 scopus 로고    scopus 로고
    • Evaluation of a bayesian model-based approach in ga studies
    • G. Hullâm, P. Antal, Cs. Szalai, and A. Falus. 2010. Evaluation of a bayesian model-based approach in ga studies. JMLR W&C Proc, 8:30-43.
    • (2010) JMLR W&C Proc , vol.8 , pp. 30-43
    • Hullâm, G.1    Antal, P.2    Szalai, Cs.3    Falus, A.4
  • 11
    • 10044252103 scopus 로고    scopus 로고
    • Distribution of mutual information from complete and incomplete data
    • M. Hutter and M. Zaffalon. 2005. Distribution of mutual information from complete and incomplete data. Comp Stat& Data An., 48(3):633-657.
    • (2005) Comp Stat& Data An. , vol.48 , Issue.3 , pp. 633-657
    • Hutter, M.1    Zaffalon, M.2
  • 12
    • 77956236174 scopus 로고    scopus 로고
    • Identifying genetic interaction in genome-wide data using bayesian networks
    • X. Jiang, M. M. Barmada, and S. Visweswaran. 2010. Identifying genetic interaction in genome-wide data using bayesian networks. Genetic Epidemiology, 34:575-581.
    • (2010) Genetic Epidemiology , vol.34 , pp. 575-581
    • Jiang, X.1    Barmada, M.M.2    Visweswaran, S.3
  • 13
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. AI, 97:273-324.
    • (1997) AI , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 14
    • 31844439894 scopus 로고    scopus 로고
    • Exact bayesian structure discovery in bayesian networks
    • M. Koivisto and K. Sood. 2004. Exact bayesian structure discovery in bayesian networks. Journal of Machine Learning Research, 5:549-573.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 15
    • 0000220791 scopus 로고    scopus 로고
    • Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
    • D. Madigan, S. A. Andersson, M. Perlman, and C. T. Volinsky. 1996. Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Coram.Statist. Theory Methods, 25:2493-2520.
    • (1996) Coram.Statist. Theory Methods , vol.25 , pp. 2493-2520
    • Madigan, D.1    Andersson, S.A.2    Perlman, M.3    Volinsky, C.T.4
  • 19
    • 78149244453 scopus 로고    scopus 로고
    • Bayesian inference of odds ratios in mis-classified binary data with a validation sub-study Commun
    • D. Rahardja, Y. D. Zhao, and H. H. Zhang. 2010. Bayesian inference of odds ratios in mis-classified binary data with a validation sub-study Commun. Stat-Simulation'Computation, 39(10):1845-1854.
    • (2010) Stat-simulation'Computation , vol.39 , Issue.10 , pp. 1845-1854
    • Rahardja, D.1    Zhao, Y.D.2    Zhang, H.H.3
  • 20
    • 70349303959 scopus 로고    scopus 로고
    • Bayesian statistical methods for genetic association studies
    • M. Stephens and D.J. Balding 2009. Bayesian statistical methods for genetic association studies. Nature Review Genetics, 10(10):681-690.
    • (2009) Nature Review Genetics , vol.10 , Issue.10 , pp. 681-690
    • Stephens, M.1    Balding, D.J.2
  • 21
    • 3242756447 scopus 로고    scopus 로고
    • Towards principled feature selection: Relevancy, filters, and wrappers
    • I. Tsamardinos and C. Aliferis. 2003. Towards principled feature selection: Relevancy, filters, and wrappers. In Proc. of the Al&Stat, p. 334-342.
    • (2003) Proc. of the Al&Stat , pp. 334-342
    • Tsamardinos, I.1    Aliferis, C.2
  • 22
    • 84874714487 scopus 로고    scopus 로고
    • Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance
    • I. Ungvari, G. Hullam, P. Antal, and C. Szalai et al. 2012. Evaluation of a partial genome screening of two asthma susceptibility regions using bayesian network based bayesian multilevel analysis of relevance. PLCS ONE, 7:1-14.
    • (2012) PLCS ONE , vol.7 , pp. 1-14
    • Ungvari, I.1    Hullam, G.2    Antal, P.3    Szalai, C.4
  • 23
    • 79953670434 scopus 로고    scopus 로고
    • Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis
    • H. Xing, P. D. McDonagh, J. Bienkowska, and J. Carulli et al. 2011. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis. PLoS Comp. Biol, 7(3):1001105.
    • (2011) PLoS Comp. Biol , vol.7 , Issue.3 , pp. 1001105
    • Xing, H.1    McDonagh, P.D.2    Bienkowska, J.3    Carulli, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.