-
1
-
-
1842714948
-
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
-
Special issue on Bayesian Models in Med
-
P. Antal, G. Fannes, Y. Moreau, D. Timmerman, and B. De Moor. 2004. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. AI in Med., 30:257-281. Special issue on Bayesian Models in Med.
-
(2004)
AI in Med.
, vol.30
, pp. 257-281
-
-
Antal, P.1
Fannes, G.2
Moreau, Y.3
Timmerman, D.4
De Moor, B.5
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits. 1992. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
9
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
12
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. 1997. Wrappers for feature subset selection. Artificial Intelligence, 97:273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
14
-
-
0000220791
-
Bayesian model averaging and model selection for markov equivalence classes of acyclic digraphs
-
D. Madigan, S. A. Andersson, M. Perlman, and C. T. Volinsky. 1996. Bayesian model averaging and model selection for markov equivalence classes of acyclic digraphs. Comm.Statist. Theory Methods, 25:2493-2520.
-
(1996)
Comm.Statist. Theory Methods
, vol.25
, pp. 2493-2520
-
-
Madigan, D.1
Andersson, S.A.2
Perlman, M.3
Volinsky, C.T.4
-
15
-
-
44049091173
-
A simulation study of three related causal data mining algorithms
-
Morgan Kaufmann, San Francisco, CA
-
S. Mani and G. F. Cooper. 2001. A simulation study of three related causal data mining algorithms. In International Workshop on Artificial Intelligence and Statistics, pages 73-80. Morgan Kaufmann, San Francisco, CA.
-
(2001)
International Workshop on Artificial Intelligence and Statistics
, pp. 73-80
-
-
Mani, S.1
Cooper, G.F.2
-
18
-
-
18144442687
-
Inferring subnetworks from perturbed expression profiles
-
D. Pe'er, A. Regev, G. Elidan, and N. Friedman. 2001. Inferring subnetworks from perturbed expression profiles. Bioinformatics, Proceedings of ISMB 2001, 17(Suppl. 1):215-224.
-
(2001)
Bioinformatics, Proceedings of ISMB 2001
, vol.17
, Issue.SUPPL. 1
, pp. 215-224
-
-
Pe'Er, D.1
Regev, A.2
Elidan, G.3
Friedman, N.4
-
19
-
-
23044519608
-
Scalable techniques for mining causal structures
-
C. Silverstein, S. Brin, R. Motwani, and J. D. Ullman. 2000. Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery, 4(2/3):163-192.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 163-192
-
-
Silverstein, C.1
Brin, S.2
Motwani, R.3
Ullman, J.D.4
-
20
-
-
84986980101
-
Sequential updating of conditional probabilities on directed acyclic graphical structures
-
D. J. Spiegelhalter and S. L. Lauritzen. 1990. Sequential updating of conditional probabilities on directed acyclic graphical structures. Networks, 20(1):579-605.
-
(1990)
Networks
, vol.20
, Issue.1
, pp. 579-605
-
-
Spiegelhalter, D.J.1
Lauritzen, S.L.2
|