메뉴 건너뛰기




Volumn 371, Issue 1984, 2013, Pages

Independent component analysis: Recent advances

Author keywords

Blind source separation; Causal analysis; Independent component analysis; Non Gaussianity

Indexed keywords

BLIND SOURCE SEPARATION; MATHEMATICAL TRANSFORMATIONS;

EID: 84874119249     PISSN: 1364503X     EISSN: None     Source Type: Journal    
DOI: 10.1098/rsta.2011.0534     Document Type: Review
Times cited : (325)

References (93)
  • 1
    • 0026191274 scopus 로고
    • Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture
    • (doi:10.1016/0165-1684(91)90079-X
    • Jutten C, Hérault J. 1991 Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1-10. (doi:10.1016/0165-1684(91)90079-X)
    • (1991) Signal Process , vol.24 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 2
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • (doi:10.1016/S0893-6080(00)00026-5
    • Hyvärinen A, Oja E. 2000 Independent component analysis: algorithms and applications. Neural Netw. 13, 411-430. (doi:10.1016/S0893-6080(00)00026-5)
    • (2000) Neural Netw , vol.13 , pp. 411-430
    • Hyvärinen, A.1    Oja, E.2
  • 5
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • (doi:10.1016/0165-1684(94)90029-9
    • Comon P. 1994 Independent component analysis: a new concept? Signal Process. 36, 287-314.(doi:10.1016/0165-1684(94)90029-9)
    • (1994) Signal Process , vol.36 , pp. 287-314
    • Comon, P.1
  • 6
    • 3142743269 scopus 로고    scopus 로고
    • Identifiability, separability, uniqueness of linear ica models
    • (doi:10.1109/LSP.2004.830118
    • Eriksson J, Koivunen V. 2004 Identifiability, separability, uniqueness of linear ICA models. IEEE Signal Process. Lett. 11, 601-604. (doi:10.1109/LSP. 2004.830118)
    • (2004) IEEE Signal Process. Lett , vol.11 , pp. 601-604
    • Eriksson, J.1    Koivunen, V.2
  • 7
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasi-maximum likelihood approach
    • (doi:10.1109/78599941
    • Pham D-T, Garrat P. 1997 Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Signal Process. 45, 1712-1725. (doi:10.1109/ 78.599941)
    • (1997) IEEE Trans. Signal Process , vol.45 , pp. 1712-1725
    • Pham, D.-T.1    Garrat, P.2
  • 8
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • (doi:10.1162/neco.1995.7.6.1129
    • Bell AJ, Sejnowski TJ. 1995 An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129-1159. (doi:10.1162/neco.1995.7.6.1129)
    • (1995) Neural Comput , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 9
    • 0000772267 scopus 로고
    • Non-linear neurons in the low noise limit: A factorial codemaximizes information transfer
    • (doi:10.1088/0954-898X/5/4/008
    • Nadal J-P, Parga N. 1994 Non-linear neurons in the low noise limit: a factorial codemaximizes information transfer. Network 5, 565-581. (doi:10.1088/0954-898X/5/4/008)
    • (1994) Network , vol.5 , pp. 565-581
    • Nadal, J.-P.1    Parga, N.2
  • 10
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for source separation
    • (doi:10.1109/97.566704
    • Cardoso J-F. 1997 Infomax and maximum likelihood for source separation. IEEE Lett. Signal Process. 4, 112-114. (doi:10.1109/97.566704)
    • (1997) IEEE Lett. Signal Process , vol.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 11
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • (doi:10.1109/72.761722
    • Hyvärinen A. 1999 Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626-634. (doi:10.1109/72.761722)
    • (1999) IEEE Trans. Neural Netw , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 12
    • 33749754615 scopus 로고    scopus 로고
    • A new learning algorithm for blind source separation
    • (eds DS Touretzky, MC Mozer, ME Hasselmo), Cambridge, MA: MIT Press
    • Amari S-I, Cichocki A, Yang H. 1996 A new learning algorithm for blind source separation. In Advances in neural information processing systems, vol. 8 (eds DS Touretzky, MC Mozer, ME Hasselmo), pp. 757-763. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 757-763
    • Amari, S.-I.1    Cichocki, A.2    Yang, H.3
  • 13
    • 84867674525 scopus 로고    scopus 로고
    • Pairwise measures of causal direction in linear non-gaussian acyclic models
    • Hyvärinen A. 2010 Pairwise measures of causal direction in linear non-gaussian acyclic models. In Proc. Asian Conf. Machine Learning, Tokyo, Japan, vol. 13, pp. 1-16.
    • (2010) Proc. Asian Conf. Machine Learning, Tokyo, Japan , vol.13 , pp. 1-16
    • Hyvärinen, A.1
  • 15
    • 0035627786 scopus 로고    scopus 로고
    • On asymmetric properties of the correlation coefficient in the regression setting
    • (doi:10.1198/000313001300339932
    • Dodge Y, Rousson V. 2001 On asymmetric properties of the correlation coefficient in the regression setting. Am. Stat. 55, 51-54. (doi:10.1198/ 000313001300339932)
    • (2001) Am. Stat , vol.55 , pp. 51-54
    • Dodge, Y.1    Rousson, V.2
  • 19
    • 77953491241 scopus 로고    scopus 로고
    • Estimation of a structural vector autoregression model using non-gaussianity
    • Hyvärinen A, Zhang K, Shimizu S, Hoyer PO. 2010 Estimation of a structural vector autoregression model using non-Gaussianity. J. Mach. Learn. Res. 11, 1709-1731.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 1709-1731
    • Hyvärinen, A.1    Zhang, K.2    Shimizu, S.3    Hoyer, P.O.4
  • 20
    • 80052148144 scopus 로고    scopus 로고
    • Multi-subject search correctly identifies causal connections and most causal directions in the dcm models of the smith et al. Simulation study
    • (doi:10.1016/j.neuroimage.2011.06.068
    • Ramsey JD, Hanson SJ, Glymour C. 2011 Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study. NeuroImage 58, 838-848. (doi:10.1016/j. neuroimage.2011.06.068)
    • (2011) NeuroImage , vol.58 , pp. 838-848
    • Ramsey, J.D.1    Hanson, S.J.2    Glymour, C.3
  • 21
    • 84856360840 scopus 로고    scopus 로고
    • Joint estimation of linear non-gaussian acyclic models
    • (doi:10.1016/j.neucom.2011.11.005
    • Shimizu S. 2012 Joint estimation of linear non-Gaussian acyclic models. Neurocomputing 81, 104-107. (doi:10.1016/j.neucom.2011.11.005)
    • (2012) Neurocomputing , vol.81 , pp. 104-107
    • Shimizu, S.1
  • 24
    • 3042594840 scopus 로고    scopus 로고
    • Validating the independent components of neuroimaging time-series via clustering and visualization
    • (doi:10.1016j.neuroimage.2004.03.027
    • Himberg J, Hyvärinen A, Esposito F. 2004 Validating the independent components of neuroimaging time-series via clustering and visualization. NeuroImage 22, 1214-1222. (doi:10.1016/j.neuroimage.2004.03.027)
    • (2004) NeuroImage , vol.22 , pp. 1214-1222
    • Himberg, J.1    Hyvärinen, A.2    Esposito, F.3
  • 25
    • 0036928393 scopus 로고    scopus 로고
    • A resampling approach to estimate the stability of one-dimensional or multidimensional independent components
    • (doi:10.1109/TBME.2002.805480
    • Meinecke F, Ziehe A, Kawanabe M, Müller K-R. 2002 A resampling approach to estimate the stability of one-dimensional or multidimensional independent components. IEEE Trans. Biomed. Eng. 49, 1514-1525. (doi:10.1109/TBME.2002.805480)
    • (2002) IEEE Trans. Biomed. Eng , vol.49 , pp. 1514-1525
    • Meinecke, F.1    Ziehe, A.2    Kawanabe, M.3    Müller, K.-R.4
  • 26
    • 79960626785 scopus 로고    scopus 로고
    • Testing the ica mixing matrix based on inter-subject or inter-session consistency
    • (doi:10.1016/j.neuroimage.2011.05.086
    • Hyvärinen A. 2011 Testing the ICA mixing matrix based on inter-subject or inter-session consistency. NeuroImage 58, 122-136. (doi:10.1016/j.neuroimage.2011.05.086)
    • (2011) NeuroImage , vol.58 , pp. 122-136
    • Hyvärinen, A.1
  • 29
    • 65549097795 scopus 로고    scopus 로고
    • A review of group ica for fmri data and ica for joint inference of imaging, genetic, erp data
    • (doi:10.1016/j.neuroimage.200810057
    • Calhoun VD, Liu J, Adali T. 2009 A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, ERP data. NeuroImage 45, S163-S172. (doi:10.1016/j.neuroimage. 2008.10.057)
    • (2009) NeuroImage , vol.45
    • Calhoun, V.D.1    Liu, J.2    Adali, T.3
  • 30
    • 80052329888 scopus 로고    scopus 로고
    • Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
    • Lecture Notes in Computer Science. Germany: Springer
    • Varoquaux G, Gramfort A, Pedregosa F, Michel V, Thirion B. 2011 Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In Information processing in medical imaging, pp. 562-573. Lecture Notes in Computer Science. Germany: Springer.
    • (2011) Information processing in medical imaging , pp. 562-573
    • Varoquaux, G.1    Gramfort, A.2    Pedregosa, F.3    Michel, V.4    Thirion, B.5
  • 32
    • 0002740437 scopus 로고
    • Foundations of the parafac procedure: Models and conditions for an explanatory multimodal factor analysis
    • Harshman RA. 1970 Foundations of the PARAFAC procedure: models and conditions for an explanatory multimodal factor analysis. UCLA Working Papers Phonetics 16, 1-84.
    • (1970) UCLA Working Papers Phonetics , vol.16 , pp. 1-84
    • Harshman, R.A.1
  • 33
    • 14244251502 scopus 로고    scopus 로고
    • Tensorial extensions of independent component analysis for group fmri data analysis
    • (doi:10.1016/j.neuroimage.2004.10.043
    • Beckmann CF, Smith SM. 2005 Tensorial extensions of independent component analysis for group fMRI data analysis. NeuroImage 25, 294-311. (doi:10.1016/j.neuroimage.2004.10.043)
    • (2005) NeuroImage , vol.25 , pp. 294-311
    • Beckmann, C.F.1    Smith, S.M.2
  • 34
    • 0031078854 scopus 로고    scopus 로고
    • A blind source separation technique based on second order statistics
    • (doi:10.110978.554307
    • Belouchrani A, Meraim KA, Cardoso J-F, Moulines E. 1997 A blind source separation technique based on second order statistics. IEEE Trans. Signal Process. 45, 434-444. (doi:10.1109/78.554307)
    • (1997) IEEE Trans. Signal Process , vol.45 , pp. 434-444
    • Belouchrani, A.1    Meraim, K.A.2    Cardoso, J.-F.3    Moulines, E.4
  • 35
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of non stationary sources
    • (doi:10.1109/78.942614
    • Pham D-T, Cardoso J-F. 2001 Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Process. 49, 1837-1848. (doi:10.1109/78.942614)
    • (2001) IEEE Trans. Signal Process , vol.49 , pp. 1837-1848
    • Pham, D.-T.1    Cardoso, J.-F.2
  • 36
    • 80054753205 scopus 로고    scopus 로고
    • Second-order methods based on color
    • (eds P Comon, C Jutten), New York, NY: Academic Press
    • Yeredor A. 2010 Second-order methods based on color. In Handbook of blind source separation (eds P Comon, C Jutten), pp. 227-279. New York, NY: Academic Press.
    • (2010) Handbook of Blind Source Separation , pp. 227-279
    • Yeredor, A.1
  • 37
    • 57949113893 scopus 로고    scopus 로고
    • Component separation with flexible models: Application to multichannel astrophysical observations
    • (doi:10.1109/JSTSP.2008.2005346
    • Cardoso J-F, Le Jeune M, Delabrouille J, BetouleM, Patanchon G. 2008 Component separation with flexible models: application to multichannel astrophysical observations. IEEE J. Sel. Top. Signal Process. 2, 735-746. (doi:10.1109/JSTSP.2008.2005346)
    • (2008) IEEE J. Sel. Top. Signal Process , vol.2 , pp. 735-746
    • Cardoso, J.-F.1    Le Jeune, M.2    Delabrouille, J.3    Betoule, M.4    Patanchon, G.5
  • 39
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • (doi:10.1162/089976600300015312
    • Hyvärinen A, Hoyer PO. 2000 Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Comput. 12, 1705-1720. (doi:10.1162/089976600300015312)
    • (2000) Neural Comput , vol.12 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.O.2
  • 40
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • (doi:10.1162/089976601750264992
    • Hyvärinen A, Hoyer PO, Inki M. 2001 Topographic independent component analysis. Neural Comput. 13, 1527-1558. (doi:10.1162/ 089976601750264992)
    • (2001) Neural Comput , vol.13 , pp. 1527-1558
    • Hyvärinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 43
    • 13244255412 scopus 로고    scopus 로고
    • A hierarchical bayesian model for learning nonlinear statistical regularities in natural signals
    • (doi:10.1162/0899766053011474
    • Karklin Y, Lewicki MS. 2005 A hierarchical Bayesian model for learning nonlinear statistical regularities in natural signals. Neural Comput. 17, 397-423. (doi:10.1162/0899766053011474)
    • (2005) Neural Comput , vol.17 , pp. 397-423
    • Karklin, Y.1    Lewicki, M.S.2
  • 44
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • (doi:10.1038/nature07481
    • Karklin Y, Lewicki MS. 2009 Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457, 83-86. (doi:10.1038/nature07481)
    • (2009) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.S.2
  • 46
    • 33644900506 scopus 로고    scopus 로고
    • Topographic productmodels applied to natural scene statistics
    • (doi:10.1162/089976606775093936
    • Osindero S,WellingM, Hinton GE. 2006 Topographic productmodels applied to natural scene statistics. Neural Comput. 18, 381-414. (doi:10.1162/ 089976606775093936)
    • (2006) Neural Comput , vol.18 , pp. 381-414
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 47
    • 78149334300 scopus 로고    scopus 로고
    • A two-layer model of natural stimuli estimated with score matching
    • (doi:10.1162/NECO-a-00010
    • Köster U, Hyvärinen A. 2010 A two-layer model of natural stimuli estimated with score matching. Neural Comput. 22, 2308-2333. (doi:10.1162/NECO-a-00010)
    • (2010) Neural Comput , vol.22 , pp. 2308-2333
    • Köster, U.1    Hyvärinen, A.2
  • 48
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive
    • (doi:10.1162/089976602760128018
    • Hinton GE. 2002 Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800. (doi:10.1162/089976602760128018)
    • (2002) Neural Comput , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 49
    • 22044434800 scopus 로고    scopus 로고
    • Estimation of non-normalized statistical models using score matching
    • Hyvärinen A. 2005 Estimation of non-normalized statistical models using score matching. J. Mach. Learn. Res. 6, 695-709.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 695-709
    • Hyvärinen, A.1
  • 50
    • 84857892556 scopus 로고    scopus 로고
    • Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
    • Gutmann MU, Hyvärinen A. 2012 Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. J. Mach. Learn. Res. 13, 307-361.
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 307-361
    • Gutmann, M.U.1    Hyvärinen, A.2
  • 51
    • 0346093740 scopus 로고    scopus 로고
    • Blind separation of sources that have spatiotemporal variance dependencies
    • (doi:10.1016/j.sigpro.2003.10.010
    • Hyvärinen A, Hurri J. 2004 Blind separation of sources that have spatiotemporal variance dependencies. Signal Process. 84, 247-254. (doi:10.1016/j.sigpro.2003.10.010)
    • (2004) Signal Process , vol.84 , pp. 247-254
    • Hyvärinen, A.1    Hurri, J.2
  • 52
    • 21844458452 scopus 로고    scopus 로고
    • Estimating functions for blind separation when sources have variance dependencies
    • Kawanabe M, Müller K-R. 2005 Estimating functions for blind separation when sources have variance dependencies. J. Mach. Learn. Res. 6, 453-482.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 453-482
    • Kawanabe, M.1    Müller, K.-R.2
  • 54
    • 54149104960 scopus 로고    scopus 로고
    • Measuring directional coupling between EEG sources
    • (doi:10.1016/j.neuroimage.2008.07.032)
    • Gómez-Herrero G, Atienza M, Egiazarian K, Cantero J. 2008 Measuring directional coupling between EEG sources. NeuroImage 43, 497-508. (doi:10.1016/j.neuroimage.2008.07.032)
    • (2008) NeuroImage , vol.43 , pp. 497-508
    • Gómez-Herrero, G.1    Atienza, M.2    Egiazarian, K.3    Cantero, J.4
  • 55
    • 84876833071 scopus 로고    scopus 로고
    • A general linear non-Gaussian state-space model: Identifiability, identification, applications
    • Zhang K, Hyvärinen A. 2011 A general linear non-Gaussian state-space model: identifiability, identification, applications. In Proc. Asian Conf. on Machine Learning, Tokyo, Japan, pp. 113-128.
    • (2011) Proc. Asian Conf. on Machine Learning, Tokyo, Japan , pp. 113-128
    • Zhang, K.1    Hyvärinen, A.2
  • 56
    • 77954646035 scopus 로고    scopus 로고
    • Modeling sparse connectivity between underlying brain sources for eegmeg
    • (doi:10.1109TBME.2010.2046325
    • Haufe S, Tomioka R, Nolte G, Müller K-R, Kawanabe M. 2010 Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans. Biomed. Eng. 57, 1954-1963. (doi:10.1109TBME.2010.2046325)
    • (2010) IEEE Trans. Biomed. Eng , vol.57 , pp. 1954-1963
    • Haufe, S.1    Tomioka, R.2    Nolte, G.3    Müller, K.-R.4    Kawanabe, M.5
  • 57
    • 33645721350 scopus 로고    scopus 로고
    • An adaptive method for subband decomposition ica
    • (doi:10.1162/089976606774841620
    • (doi:10.1109/TBME.2010.2046325) 57. Zhang K, Chan L. 2006 An adaptive method for subband decomposition ICA. Neural Comput. 18, 191-223. (doi:10.1162/089976606774841620)
    • (2006) Neural Comput , vol.18 , pp. 191-223
    • Zhang, K.1    Chan, L.2
  • 58
    • 84857282781 scopus 로고    scopus 로고
    • Joint block diagonalization algorithms for optimal separation of multidimensional components
    • Berlin, Germany: Springer
    • Lahat D, Cardoso J-F, Messer H. 2012 Joint block diagonalization algorithms for optimal separation of multidimensional components. In Latent variable analysis and signal separation, vol. 7191, pp. 155-162. Berlin, Germany: Springer.
    • (2012) Latent Variable Analysis and Signal Separation , vol.7191 , pp. 155-162
    • Lahat, D.1    Cardoso, J.-F.2    Messer, H.3
  • 60
    • 3543069864 scopus 로고    scopus 로고
    • Beyond independent components: Trees and clusters
    • Bach FR, Jordan MI. 2003 Beyond independent components: trees and clusters. J. Mach. Learn. Res. 4, 1205-1233.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1205-1233
    • Bach, F.R.1    Jordan, M.I.2
  • 61
    • 84874143517 scopus 로고    scopus 로고
    • The 'tree-dependent components' of natural images are edge filters
    • Cambridge, MA: MIT Press
    • Zoran D,Weiss Y. 2010 The 'tree-dependent components' of natural images are edge filters. In Advances in neural information processing systems, vol. 22. Cambridge, MA: MIT Press.
    • (2010) Advances in neural information processing systems , vol.22
    • Zoran, D.1    Weiss, Y.2
  • 62
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • (doi:10.1016j.tics.2007.09.004
    • Hinton GE. 2007 Learning multiple layers of representation. Trends Cogn. Sci. 11, 428-434. (doi:10.1016j.tics.2007.09.004)
    • (2007) Trends Cogn. Sci , vol.11 , pp. 428-434
    • Hinton, G.E.1
  • 63
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • (doi:10.1126/science.1127647
    • Hinton GE, Salakhutdinov RR. 2006 Reducing the dimensionality of data with neural networks. Science 313, 504-507. (doi:10.1126/science.1127647)
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 64
    • 80053540444 scopus 로고    scopus 로고
    • Unsupervised learning of hierarchical representations with convolutional deep belief networks
    • (doi:10.11452001269.2001295
    • Lee H, Grosse R, Ranganath R, Ng AY. 2011 Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM 54, 95-103. (doi:10.11452001269.2001295)
    • (2011) Commun. ACM , vol.54 , pp. 95-103
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 65
    • 0026155673 scopus 로고
    • Indeterminacy and identifiability of blind identification
    • (doi:10.1109/31.76486
    • Tong L, Liu R-W, Soon VC, Huang Y-F. 1991 Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits Syst. 38, 499-509. (doi:10.1109/31.76486)
    • (1991) IEEE Trans. Circuits Syst , vol.38 , pp. 499-509
    • Tong, L.1    Liu, R.-W.2    Soon, V.C.3    Huang, Y.-F.4
  • 66
    • 18044403793 scopus 로고    scopus 로고
    • Complexity pursuit: Separating interesting components from time-series
    • (doi:10.1162/089976601300014394
    • Hyvärinen A. 2001 Complexity pursuit: separating interesting components from time-series. Neural Comput. 13, 883-898. (doi:10.1162/ 089976601300014394)
    • (2001) Neural Comput , vol.13 , pp. 883-898
    • Hyvärinen, A.1
  • 67
    • 19944392267 scopus 로고    scopus 로고
    • A unifying model for blind separation of independent sources
    • (doi:10.1016/j.sigpro.2005.02.003
    • Hyvärinen A. 2005 A unifying model for blind separation of independent sources. Signal Process. 85, 1419-1427. (doi:10.1016/j.sigpro.2005. 02.003)
    • (2005) Signal Process , vol.85 , pp. 1419-1427
    • Hyvärinen, A.1
  • 68
    • 56449097995 scopus 로고    scopus 로고
    • Exploiting source non-stationary and coloration in blind source separation
    • IEEE
    • Pham D-T. 2002 Exploiting source non-stationary and coloration in blind source separation. In Proc. Int. Conf. on Digital Signal Processing (dSP2002), pp. 151-154. IEEE.
    • (2002) Proc. Int. Conf. on Digital Signal Processing (dSP2002 , pp. 151-154
    • Pham, D.-T.1
  • 69
    • 70350058345 scopus 로고
    • Scale mixing of symmetric distributions with zero means
    • (doi:10.1214/aoms/1177706099
    • Beale EML, Mallows CL. 1959 Scale mixing of symmetric distributions with zero means. Ann. Math. Stat. 30, 1145-1151. (doi:10.1214/aoms/1177706099)
    • (1959) Ann. Math. Stat , vol.30 , pp. 1145-1151
    • Beale, E.M.L.1    Mallows, C.L.2
  • 70
    • 0000660321 scopus 로고    scopus 로고
    • Blind source separation by sparse decomposition in a signal dictionary
    • (doi:10.1162/089976601300014385
    • Zibulevsky M, Pearlmutter BA. 2001 Blind source separation by sparse decomposition in a signal dictionary. Neural Comput. 13, 863-882. (doi:10.1162/089976601300014385)
    • (2001) Neural Comput , vol.13 , pp. 863-882
    • Zibulevsky, M.1    Pearlmutter, B.A.2
  • 72
    • 8344255793 scopus 로고    scopus 로고
    • A multiscale framework for blind separation of linearly mixed signals
    • Kisilev P, Zibulevsky M, Zeevi YY. 2003 A multiscale framework for blind separation of linearly mixed signals. J. Mach. Learn. Res. 4, 1339-1363.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 1339-1363
    • Kisilev, P.1    Zibulevsky, M.2    Zeevi, Y.Y.3
  • 73
    • 84874127157 scopus 로고    scopus 로고
    • Sparse component analysis
    • (eds P Comon, C Jutten) New York, NY: Academic Press
    • Gribonval R, Zibulevsky M. 2010 Sparse component analysis. In Handbook of blind source separation (eds P Comon, C Jutten). New York, NY: Academic Press.
    • (2010) Handbook of Blind Source Separation
    • Gribonval, R.1    Zibulevsky, M.2
  • 74
    • 70350070225 scopus 로고    scopus 로고
    • Independent component analysis of short-time fourier transforms for spontaneous eeg/meg analysis
    • (doi:10.1016/j.neuroimage.2009.08.028
    • Hyvärinen A, Ramkumar P, Parkkonen L, Hari R. 2010 Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. NeuroImage 49, 257-271.(doi:10.1016/j.neuroimage.2009.08.028)
    • (2010) NeuroImage , vol.49 , pp. 257-271
    • Hyvärinen, A.1    Ramkumar, P.2    Parkkonen, L.3    Hari, R.4
  • 75
    • 33745701263 scopus 로고    scopus 로고
    • Complex random vectors and ica models: Identifiability, uniqueness, separability
    • (doi:10.1109/TIT.2005.864440
    • Eriksson J, Koivunen V. 2006 Complex random vectors and ICA models: identifiability, uniqueness, separability. IEEE Trans. Inf. Theory 52, 1017-1029. (doi:10.1109/TIT.2005.864440)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1017-1029
    • Eriksson, J.1    Koivunen, V.2
  • 76
    • 0034136037 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis of complex valued signals
    • (doi:10.1142/SO129065700000028
    • Bingham E, Hyvärinen A. 2000 A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Syst. 10, 1-8. (doi:10.1142/ SO129065700000028)
    • (2000) Int. J. Neural Syst , vol.10 , pp. 1-8
    • Bingham, E.1    Hyvärinen, A.2
  • 77
    • 0141978306 scopus 로고    scopus 로고
    • The fixed-point algorithm and maximum likelihood estimation for independent component analysis
    • (doi:10.1023/A:1018647011077
    • Hyvärinen A. 1999 The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Process. Lett. 10, 1-5. (doi:10.1023/A:1018647011077)
    • (1999) Neural Process. Lett , vol.10 , pp. 1-5
    • Hyvärinen, A.1
  • 78
    • 33847230522 scopus 로고    scopus 로고
    • Efficient independent component analysis
    • (doi:10.1214009053606000000939
    • Chen A, Bickel PJ. 2006 Efficient independent component analysis. Ann. Stat. 34, 2824-2855.(doi:10.1214009053606000000939)
    • (2006) Ann. Stat , vol.34 , pp. 2824-2855
    • Chen, A.1    Bickel, P.J.2
  • 79
    • 0035330650 scopus 로고    scopus 로고
    • Efficient source adaptivity in independent component analysis
    • (doi:10.1109/72.925558
    • Vlassis N, Motomura Y. 2001 Efficient source adaptivity in independent component analysis. IEEE Trans. Neural Netw. 12, 559-566. (doi:10.1109/72. 925558)
    • (2001) IEEE Trans. Neural Netw , vol.12 , pp. 559-566
    • Vlassis, N.1    Motomura, Y.2
  • 80
    • 84898934694 scopus 로고    scopus 로고
    • Independent components analysis through product density estimation
    • (Proc. NIPS*2002). Cambridge. MA: MIT Press
    • Hastie T, Tibshirani R. 2003 Independent components analysis through product density estimation. In Advances in neural information processing 15 (Proc. NIPS.*2002). Cambridge. MA: MIT Press.
    • (2003) Advances in neural information processing , vol.15
    • Hastie, T.1    Tibshirani, R.2
  • 82
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach FR, JordanMI. 2002 Kernel independent component analysis. J. Mach. Learn. Res. 3, 1-48.
    • (2002) J. Mach. Learn. Res , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 84
    • 34548820639 scopus 로고    scopus 로고
    • Least-dependent-component analysis based on mutual information
    • (doi:10.1103/PhysRevE.70.
    • Stögbauer H, Kraskov A, Astakhov SA, Grassberger P. 2004 Least-dependent-component analysis based on mutual information. Phys. Rev. E 70, 066123. (doi:10.1103/PhysRevE.70.
    • (2004) Phys. Rev. E , vol.70 , pp. 066123
    • Stögbauer, H.1    Kraskov, A.2    Astakhov, S.A.3    Grassberger, P.4
  • 85
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • (doi:10.1002/env.3170050203
    • Paatero P, Tapper U. 1994 Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126. (doi:10.1002/ env.3170050203)
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 86
    • 0030954231 scopus 로고    scopus 로고
    • Least squares formulation of robust non-negative factor analysis
    • doi101016/S0169-74399600044-960005
    • Paatero P. 1997 Least squares formulation of robust non-negative factor analysis. Chemometrics Intell. Lab. Syst. 37, 23-35. (doi:10.1016/S0169-7439(96) 00044-5)
    • (1997) Chemometrics Intell. Lab. Syst , vol.37 , pp. 23-35
    • Paatero, P.1
  • 87
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • (doi:10.1038/44565
    • Lee DD, Seung HS. 1999 Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791. (doi:10.1038/44565)
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 88
    • 0036284161 scopus 로고    scopus 로고
    • A multi-layer sparse coding network learns contour coding from natural images
    • (doi:10.1016/S0042-6989(02)00017-2
    • Hoyer PO, Hyvärinen A. 2002 A multi-layer sparse coding network learns contour coding from natural images. Vision Res. 42, 1593-1605. (doi:10.1016/S0042-6989(02)00017-2)
    • (2002) Vision Res , vol.42 , pp. 1593-1605
    • Hoyer, P.O.1    Hyvärinen, A.2
  • 91
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer PO. 2004 Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457-1469.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 92
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for non-negative independent component analysis
    • (doi:10.1109/TNN.2003.810616
    • Plumbley MD 2003 Algorithms for non-negative independent component analysis. IEEE Trans. Neural Netw. 14, 534-543. (doi:10.1109/TNN.2003.810616)
    • (2003) IEEE Trans. Neural Netw , vol.14 , pp. 534-543
    • Plumbley, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.