메뉴 건너뛰기




Volumn 17, Issue 2, 2005, Pages 397-423

A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; LEARNING; NONLINEAR SYSTEM;

EID: 13244255412     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766053011474     Document Type: Article
Times cited : (128)

References (33)
  • 1
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 2
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components" of natural scenes are edge filters
    • Bell, A. J., & Sejnowski, T. J. (1997). The "independent components" of natural scenes are edge filters. Vision Res., 37(23), 3327-3338.
    • (1997) Vision Res. , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0033338289 scopus 로고    scopus 로고
    • Image compression via joint statistical characterization in the wavelet domain
    • Buccigrossi, R. W., & Simoncelli, E. P. (1999). Image compression via joint statistical characterization in the wavelet domain. IEEE Transactions on Image Processing, 8(12), 1688-1701.
    • (1999) IEEE Transactions on Image Processing , vol.8 , Issue.12 , pp. 1688-1701
    • Buccigrossi, R.W.1    Simoncelli, E.P.2
  • 5
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind source separation
    • Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind source separation. IEEE Signal Processing Letters, 4, 109-111.
    • (1997) IEEE Signal Processing Letters , vol.4 , pp. 109-111
    • Cardoso, J.-F.1
  • 9
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Foldiak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194-200.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 194-200
    • Foldiak, P.1
  • 10
    • 0036284161 scopus 로고    scopus 로고
    • A multi-layer sparse coding network learns contour coding from natural images
    • Hoyer, P. O., & Hyvärinen, A. (2002). A multi-layer sparse coding network learns contour coding from natural images. Vision Res., 42, 1593-1605.
    • (2002) Vision Res. , vol.42 , pp. 1593-1605
    • Hoyer, P.O.1    Hyvärinen, A.2
  • 11
    • 0037365920 scopus 로고    scopus 로고
    • Simple-cell-like receptive fields maximize temporal coherence in natural video
    • Hurri, J., & Hyvärinen, A. (2003). Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural Computation, 15(3), 663-691.
    • (2003) Neural Computation , vol.15 , Issue.3 , pp. 663-691
    • Hurri, J.1    Hyvärinen, A.2
  • 12
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase- And shift-invariant features by decomposition of natural images into independent feature subspaces
    • Hyvärinen, A., & Hoyer, P. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12, 1705-1720.
    • (2000) Neural Computation , vol.12 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.2
  • 13
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Comput., 13, 1527-1558.
    • (2001) Neural Comput. , vol.13 , pp. 1527-1558
    • Hyvärinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 14
    • 17544384568 scopus 로고    scopus 로고
    • Bubbles: A unifying framework for low-level statistical properties of natural image sequences
    • Hyvärinen, A., Hurri, J., & Väyrynen, J. (2003). Bubbles: A unifying framework for low-level statistical properties of natural image sequences. Journal of the Optical Society of America A, 20(7), 1237-1252.
    • (2003) Journal of the Optical Society of America A , vol.20 , Issue.7 , pp. 1237-1252
    • Hyvärinen, A.1    Hurri, J.2    Väyrynen, J.3
  • 18
    • 0032178255 scopus 로고    scopus 로고
    • Collinearity and parallelism are statistically significant second order relations of complex cell responses
    • Krüger, N. (1998). Collinearity and parallelism are statistically significant second order relations of complex cell responses. Neural Processing Letters, 8, 117-129.
    • (1998) Neural Processing Letters , vol.8 , pp. 117-129
    • Krüger, N.1
  • 21
    • 0036504424 scopus 로고    scopus 로고
    • Unsupervised classification, segmentation and de-noising of images using ICA mixture models
    • Lee, T.-W., & Lewicki, M. S. (2002). Unsupervised classification, segmentation and de-noising of images using ICA mixture models. IEEE Trans. Image Proc., 11 (3), 270-279.
    • (2002) IEEE Trans. Image Proc. , vol.11 , Issue.3 , pp. 270-279
    • Lee, T.-W.1    Lewicki, M.S.2
  • 22
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation
    • Lee, T.-W., Lewicki, M. S., & Sejnowski, T. J. (2000). ICA mixture models for unsupervised classification of non-Gaussian sources and automatic context switching in blind signal separation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(10), 1078-1089.
    • (2000) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.22 , Issue.10 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 23
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive-field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of non stationary sources
    • Pham, D.-T., & Cardoso, J.-F. (2001). Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Processing, 49(9), 1837-1848.
    • (2001) IEEE Trans. Signal Processing , vol.49 , Issue.9 , pp. 1837-1848
    • Pham, D.-T.1    Cardoso, J.-F.2
  • 27
    • 0035398091 scopus 로고    scopus 로고
    • Bayesian tree-structured image modeling using wavelet domain Hidden Markov models
    • Romberg, J., Choi, H., & Baraniuk, R. (2001). Bayesian tree-structured image modeling using wavelet domain Hidden Markov models. IEEE Transactions on Image Processing, 10(7), 1056-1068.
    • (2001) IEEE Transactions on Image Processing , vol.10 , Issue.7 , pp. 1056-1068
    • Romberg, J.1    Choi, H.2    Baraniuk, R.3
  • 28
    • 0034939633 scopus 로고    scopus 로고
    • Natural signal statistics and sensory gain control
    • Schwartz, O., & Simoncelli, E. P. (2001). Natural signal statistics and sensory gain control. Nat. Neurosci., 4, 819-825.
    • (2001) Nat. Neurosci. , vol.4 , pp. 819-825
    • Schwartz, O.1    Simoncelli, E.P.2
  • 30
    • 0032492432 scopus 로고    scopus 로고
    • Independent component filters of natural images compared with simple cells in primary visual cortex
    • van Hateren, J. H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Soc. Lond. B, 265, 359-366.
    • (1998) Proc. Royal Soc. Lond. B , vol.265 , pp. 359-366
    • Van Hateren, J.H.1    Van Der Schaaf, A.2
  • 32
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • S. Decker, S. Thrun, & K. Obermayer (Eds.), Cambridge, MA: MIT Press
    • Welling, M., Hinton, G. E., & Osindero, S. (2003). Learning sparse topographic representations with products of student-t distributions. In S. Decker, S. Thrun, & K. Obermayer (Eds.), Advances in neural information processing systems, 15, Cambridge, MA: MIT Press.
    • (2003) Advances in Neural Information Processing Systems , vol.15
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 33
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715-770.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.