메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 1709-1731

Estimation of a structural vector autoregression model using non-gaussianity

Author keywords

Causality; Independent component analysis; Non Gaussianity; Structural equation models; Structural vector autoregression

Indexed keywords

AUTO REGRESSIVE MODELS; BRAIN-IMAGING DATA; COMPUTATIONALLY EFFICIENT; GAUSSIANS; IDENTIFIABILITY; NETWORK STRUCTURES; NON-GAUSSIAN; NON-GAUSSIAN MODELS; NONGAUSSIANITY; PRIOR KNOWLEDGE; STANDING PROBLEMS; STRUCTURAL EQUATION MODELS; VECTOR AUTOREGRESSIONS;

EID: 77953491241     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (323)

References (42)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • H. Akaike. Information theory and an extension of the maximum likelihood principle. Proc. 2nd International Symposium on Information Theory, pages 267-281, 1973.
    • (1973) Proc. 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 3
    • 70350058345 scopus 로고
    • Scale mixing of symmetric distributions with zero means
    • E. M. L. Beale and C. L. Mallows. Scale mixing of symmetric distributions with zero means. The Annals of Mathematical Statistics, 30(4): 1145-1151, 1959.
    • (1959) The Annals of Mathematical Statistics , vol.30 , Issue.4 , pp. 1145-1151
    • Beale, E.M.L.1    Mallows, C.L.2
  • 6
    • 33847230522 scopus 로고    scopus 로고
    • Efficient independent component analysis
    • A. Chen and P. J. Bickel. Efficient independent component analysis. The Annals of Statistics, 34 (6):2824-2855, 2006.
    • (2006) The Annals of Statistics , vol.34 , Issue.6 , pp. 2824-2855
    • Chen, A.1    Bickel, P.J.2
  • 8
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • P. Comon. Independent component analysis - a new concept? Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 9
    • 0347568442 scopus 로고    scopus 로고
    • Searching for the causal structure of a vector autoregression
    • S. Demiralp and K. D. Hoover. Searching for the causal structure of a vector autoregression. Oxford Bulletin of Economics and Statistics, 65 (supplement):745-767, 2003.
    • (2003) Oxford Bulletin of Economics and Statistics , vol.65 , Issue.SUPPL. , pp. 745-767
    • Demiralp, S.1    Hoover, K.D.2
  • 10
    • 4243906774 scopus 로고    scopus 로고
    • A general nonparametric bootstrap test for granger causality
    • H. Broer and B. Krauskopf nd G. Vegter, editors (Chapter 16). Taylor & Francis, London
    • C. Diks and J. DeGoede. A general nonparametric bootstrap test for granger causality. In H. Broer and B. Krauskopf nd G. Vegter, editors, Global Analysis of Dynamical Systems, pages 391-403 (Chapter 16). Taylor & Francis, London, 2001.
    • (2001) Global Analysis of Dynamical Systems , pp. 391-403
    • Diks, C.1    DeGoede, J.2
  • 11
    • 0004090530 scopus 로고
    • R. F. Engle, editor. Oxford University Press
    • R. F. Engle, editor. ARCH: Selected Readings. Oxford University Press, 1995.
    • (1995) ARCH: Selected Readings
  • 12
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. NeuroImage, 19(4): 1273-1302, 2003.
    • (2003) NeuroImage , vol.19 , Issue.4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 14
    • 0000351727 scopus 로고
    • Investigating causal relations by econometric models and cross-spectral methods
    • C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods. Econométrica, 37:424-438, 1969.
    • (1969) Econométrica , vol.37 , pp. 424-438
    • Granger, C.W.J.1
  • 15
    • 0031060037 scopus 로고    scopus 로고
    • Human cortical oscillations: A neuromagnetic view through the skull
    • R. Hari and R. Salmelin. Human cortical oscillations: a neuromagnetic view through the skull. Trends in Neuroscience, 20:44-49, 1997.
    • (1997) Trends in Neuroscience , vol.20 , pp. 44-49
    • Hari, R.1    Salmelin, R.2
  • 18
    • 0035506142 scopus 로고    scopus 로고
    • Blind source separation by nonstationarity of variance: A cumulant-based approach
    • DOI 10.1109/72.963782, PII S1045922701095170
    • A. Hyvärinen. Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks, 12(6): 1471-1474, 2001. (Pubitemid 33106051)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1471-1474
    • Hyvarinen, A.1
  • 19
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 20
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general nonlinear Hebbian-like learning rules
    • PII S0165168497001977
    • A. Hyvärinen and E. Oja. Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, 64(3):301-313, 1998. (Pubitemid 128443080)
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 301-313
    • Hyvarinen, A.1    Oja, E.2
  • 22
    • 56449113928 scopus 로고    scopus 로고
    • Causal modelling combining instantaneous and lagged effects: An identifiable model based on non-Gaussianity
    • Helsinki, Finland
    • A. Hyvärinen, S. Shimizu, and P. O. Hoyer. Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity. In Proc. Int. Conf. on Machine Learning (ICML2008), pages 424-431, Helsinki, Finland, 2008.
    • (2008) Proc. Int. Conf. on Machine Learning (ICML2008) , pp. 424-431
    • Hyvärinen, A.1    Shimizu, S.2    Hoyer, P.O.3
  • 23
    • 70350070225 scopus 로고    scopus 로고
    • Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
    • A. Hyvärinen, P. Ramkumar, L. Parkkonen, and R. Hari. Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. NeuroImage, 49(1):257-271, 2010.
    • (2010) NeuroImage , vol.49 , Issue.1 , pp. 257271
    • Hyvärinen, A.1    Ramkumar, P.2    Parkkonen, L.3    Hari, R.4
  • 24
    • 0036531349 scopus 로고    scopus 로고
    • Blind separation methods based on pearson system and its extensions
    • J. Karvanen and V. Koivunen. Blind separation methods based on pearson system and its extensions. Signal Processing, 82(4):663-1573, 2002.
    • (2002) Signal Processing , vol.82 , Issue.4 , pp. 663-1573
    • Karvanen, J.1    Koivunen, V.2
  • 25
    • 33846898773 scopus 로고    scopus 로고
    • Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data
    • DOI 10.1002/hbm.20259
    • J. Kim, W. Zhu, L. Chang, P. M. Bentler, and T. Ernst. Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28:85-93, 2007. (Pubitemid 46233218)
    • (2007) Human Brain Mapping , vol.28 , Issue.2 , pp. 85-93
    • Kim, J.1    Zhu, W.2    Chang, L.3    Bentler, P.M.4    Ernst, T.5
  • 28
    • 0029064164 scopus 로고
    • A neural net for blind separation of nonstationary signals
    • K. Matsuoka, M. Ohya, and M. Kawamoto. A neural net for blind separation of nonstationary signals. Neural Networks, 8(3):411-419, 1995.
    • (1995) Neural Networks , vol.8 , Issue.3 , pp. 411-419
    • Matsuoka, K.1    Ohya, M.2    Kawamoto, M.3
  • 29
    • 33847719826 scopus 로고    scopus 로고
    • Graphical models for the identification of causal structures in multivariate time series models
    • Kaohsiung, Taiwan
    • A. Moneta and P. Spirtes. Graphical models for the identification of causal structures in multivariate time series models. In Proc. Joint Conference on Information Sciences, Kaohsiung, Taiwan, 2006.
    • (2006) Proc. Joint Conference on Information Sciences
    • Moneta, A.1    Spirtes, P.2
  • 30
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data
    • R. Opgen-Rhein and K. Strimmer. From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology, 1(37), 2007.
    • (2007) BMC Systems Biology , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 32
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of non stationary sources
    • D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Processing, 49(9): 1837-1848, 2001.
    • (2001) IEEE Trans. Signal Processing , vol.49 , Issue.9 , pp. 1837-1848
    • Pham, D.-T.1    Cardoso, J.-F.2
  • 33
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasimaximum likelihood approach
    • D.-T. Pham and P. Garrat. Blind separation of mixture of independent sources through a quasimaximum likelihood approach. IEEE Trans, on Signal Processing, 45(7): 1712-1725, 1997.
    • (1997) IEEE Trans, on Signal Processing , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.-T.1    Garrat, P.2
  • 34
    • 14244259417 scopus 로고    scopus 로고
    • Mapping directed influence over the brain using Granger causality and fMRI
    • A. Roebroeck, E. Formisano, and R. Goebel. Mapping directed influence over the brain using Granger causality and fMRI. Neurolmage, 25(1):230-242, 2005.
    • (2005) Neurolmage , vol.25 , Issue.1 , pp. 230-242
    • Roebroeck, A.1    Formisano, E.2    Goebel, R.3
  • 38
    • 0031523817 scopus 로고    scopus 로고
    • Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions
    • N. R. Swanson and C. W. J. Granger. Impulse response functions based on a causal approach to residual orthogonalization in vector autoregression. J. of the Americal Statistical Association, 92: 357-367, 1997. (Pubitemid 127133363)
    • (1997) Journal of the American Statistical Association , vol.92 , Issue.437 , pp. 357-367
    • Swanson, N.R.1    Granger, C.W.J.2
  • 39
    • 44049111332 scopus 로고
    • Testing for nonlinearity in time series: The method of surrogate data
    • J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Farmer. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58:77-94, 1992.
    • (1992) Physica D , vol.58 , pp. 77-94
    • Theiler, J.1    Eubank, S.2    Longtin, A.3    Galdrikian, B.4    Farmer, J.5
  • 40
    • 70349939643 scopus 로고    scopus 로고
    • Causality discovery with additive disturbances: An information- theoretical perspective
    • K. Zhang and A. Hyvärinen. Causality discovery with additive disturbances: An information-theoretical perspective. In Proc. European Conference on Machine Learning (ECML2009), pages 570-585, 2009.
    • (2009) Proc. European Conference on Machine Learning (ECML2009) , pp. 570-585
    • Zhang, K.1    Hyvärinen, A.2
  • 42
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou, The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1417-1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1417-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.