메뉴 건너뛰기




Volumn 81, Issue , 2012, Pages 104-107

Joint estimation of linear non-Gaussian acyclic models

Author keywords

Analysis of multiple groups; Causal discovery; Graphical models; Non Gaussianity; Structural equation models

Indexed keywords

CAUSAL DISCOVERY; GRAPHICAL MODEL; MULTIPLE-GROUP; NONGAUSSIANITY; STRUCTURAL EQUATION MODELS;

EID: 84856360840     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.11.005     Document Type: Article
Times cited : (35)

References (28)
  • 3
    • 52949107186 scopus 로고    scopus 로고
    • Estimation of causal effects using linear non-Gaussian causal models with hidden variables
    • Hoyer P.O., Shimizu S., Kerminen A., Palviainen M. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. Int. J. Approx. Reason. 2008, 49(2):362-378.
    • (2008) Int. J. Approx. Reason. , vol.49 , Issue.2 , pp. 362-378
    • Hoyer, P.O.1    Shimizu, S.2    Kerminen, A.3    Palviainen, M.4
  • 5
    • 77953491241 scopus 로고    scopus 로고
    • Estimation of a structural vector autoregressive model using non-Gaussianity
    • Hyvärinen A., Zhang K., Shimizu S., Hoyer P.O. Estimation of a structural vector autoregressive model using non-Gaussianity. J. Mach. Learn. Res. 2010, 11:1709-1731.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1709-1731
    • Hyvärinen, A.1    Zhang, K.2    Shimizu, S.3    Hoyer, P.O.4
  • 6
    • 84858789485 scopus 로고    scopus 로고
    • Nonlinear causal discovery with additive noise models, in: D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.), Advances in Neural Information Processing Systems
    • P.O. Hoyer, D. Janzing, J. Mooij, J. Peters, B. Schölkopf, Nonlinear causal discovery with additive noise models, in: D. Koller, D. Schuurmans, Y. Bengio, L. Bottou (Eds.), Advances in Neural Information Processing Systems, vol. 21, 2009, pp. 689-696.
    • (2009) , vol.21 , pp. 689-696
    • Hoyer, P.O.1    Janzing, D.2    Mooij, J.3    Peters, J.4    Schölkopf, B.5
  • 7
    • 80053222353 scopus 로고    scopus 로고
    • Discovering cyclic causal models by independent components analysis, in: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI2008)
    • G. Lacerda, P. Spirtes, J. Ramsey, P.O. Hoyer, Discovering cyclic causal models by independent components analysis, in: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI2008), 2008, pp. 366-374.
    • (2008) , pp. 366-374
    • Lacerda, G.1    Spirtes, P.2    Ramsey, J.3    Hoyer, P.O.4
  • 8
    • 78650830549 scopus 로고    scopus 로고
    • An identifiable model to assess frequency-domain Granger causality in the presence of significant instantaneous interactions, in: Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS2010)
    • L. Faes, S. Erla, E. Tranquillini, D. Orrico, G. Nollo, An identifiable model to assess frequency-domain Granger causality in the presence of significant instantaneous interactions, in: Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS2010), 2010, pp. 1699-1702.
    • (2010) , pp. 1699-1702
    • Faes, L.1    Erla, S.2    Tranquillini, E.3    Orrico, D.4    Nollo, G.5
  • 9
    • 79953029078 scopus 로고    scopus 로고
    • Causal modeling and inference for electricity markets
    • Ferkingsta E., Lølanda A., Wilhelmsen M. Causal modeling and inference for electricity markets. Energy Econ. 2011, 33(3):404-412.
    • (2011) Energy Econ. , vol.33 , Issue.3 , pp. 404-412
    • Ferkingsta, E.1    Lølanda, A.2    Wilhelmsen, M.3
  • 14
    • 77951967380 scopus 로고    scopus 로고
    • Inferring dynamic gene networks under varying conditions for transcriptomic network comparison
    • Shimamura T., Imoto S., Yamaguchi R., Nagasaki M., Miyano S. Inferring dynamic gene networks under varying conditions for transcriptomic network comparison. Bioinformatics 2010, 26(8):1064-1072.
    • (2010) Bioinformatics , vol.26 , Issue.8 , pp. 1064-1072
    • Shimamura, T.1    Imoto, S.2    Yamaguchi, R.3    Nagasaki, M.4    Miyano, S.5
  • 15
    • 71149088915 scopus 로고    scopus 로고
    • Structure learning with independent non-identically distributed data, in: Proceedings of the 26th International Conference on Machine Learning (ICML2009), Montreal, Canada, ACM
    • R.E. Tillman, Structure learning with independent non-identically distributed data, in: Proceedings of the 26th International Conference on Machine Learning (ICML2009), Montreal, Canada, ACM, 2009, pp. 1041-1048.
    • (2009) , pp. 1041-1048
    • Tillman, R.E.1
  • 16
    • 0000658760 scopus 로고
    • Covariance structure analysis in several populations
    • Lee S.Y., Tsui K.L. Covariance structure analysis in several populations. Psychometrika 1982, 47(3):297-308.
    • (1982) Psychometrika , vol.47 , Issue.3 , pp. 297-308
    • Lee, S.Y.1    Tsui, K.L.2
  • 18
    • 67651253168 scopus 로고    scopus 로고
    • Multi-source causal analysis: Learning Bayesian networks from multiple datasets, in: Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI2009), Springer
    • I. Tsamardinos, A.P. Mariglis, Multi-source causal analysis: Learning Bayesian networks from multiple datasets, in: Proceedings of the 5th IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI2009), Springer, 2009, pp. 479-490.
    • (2009) , pp. 479-490
    • Tsamardinos, I.1    Mariglis, A.P.2
  • 19
    • 84856340366 scopus 로고    scopus 로고
    • Learning equivalence classes of directed acyclic latent variable models from multiple datasets with overlapping variables, in: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS2011)
    • R.E. Tillman, P. Spirtes, Learning equivalence classes of directed acyclic latent variable models from multiple datasets with overlapping variables, in: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS2011), 2011.
    • (2011)
    • Tillman, R.E.1    Spirtes, P.2
  • 20
    • 84856361972 scopus 로고    scopus 로고
    • Adaptive multi-task Lasso: with application to eQTL detection, in: J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems
    • S. Lee, J. Zhu, E. Xing, Adaptive multi-task Lasso: with application to eQTL detection, in: J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems, vol. 23, 2010, pp. 1306-1314.
    • (2010) , vol.23 , pp. 1306-1314
    • Lee, S.1    Zhu, J.2    Xing, E.3
  • 21
    • 80052148144 scopus 로고    scopus 로고
    • Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study
    • Ramsey J., Hanson S., Glymour C. Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study. Neuroimage 2011, 58(3):838-848.
    • (2011) Neuroimage , vol.58 , Issue.3 , pp. 838-848
    • Ramsey, J.1    Hanson, S.2    Glymour, C.3
  • 23
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach F.R., Jordan M.I. Kernel independent component analysis. J. Mach. Learn. Res. 2002, 3:1-48.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 24
    • 84867674525 scopus 로고    scopus 로고
    • Pairwise measures of causal direction in linear non-Gaussian acyclic models, in: JMLR Workshop and Conference Proceedings (Proceedings of the 2nd Asian Conference on Machine Learning, ACML2010)
    • A. Hyvärinen, Pairwise measures of causal direction in linear non-Gaussian acyclic models, in: JMLR Workshop and Conference Proceedings (Proceedings of the 2nd Asian Conference on Machine Learning, ACML2010), vol. 13, 2010, pp. 1-16.
    • (2010) , vol.13 , pp. 1-16
    • Hyvärinen, A.1
  • 25
    • 85180619000 scopus 로고    scopus 로고
    • An experimental comparison of linear non-Gaussian causal discovery methods and their variants, in: Proceedings of 2010 International Joint Conference on Neural Network0s (IJCNN2010)
    • Y. Sogawa, S. Shimizu, Y. Kawahara, T. Washio, An experimental comparison of linear non-Gaussian causal discovery methods and their variants, in: Proceedings of 2010 International Joint Conference on Neural Networks (IJCNN2010), 2010, pp. 768-775.
    • (2010) , pp. 768-775
    • Sogawa, Y.1    Shimizu, S.2    Kawahara, Y.3    Washio, T.4
  • 26
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M., Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 2007, 8:613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 27
    • 77951966792 scopus 로고    scopus 로고
    • Consistent nonparametric tests of independence
    • Gretton A., Györfi L. Consistent nonparametric tests of independence. J. Mach. Learn. Res. 2010, 11:1391-1423.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1391-1423
    • Gretton, A.1    Györfi, L.2
  • 28
    • 78049414523 scopus 로고    scopus 로고
    • Assessing statistical reliability of LiNGAM via multiscale bootstrap, in: Proceedings of the International Conference on Artificial Neural Networks (ICANN2010)
    • Y. Komatsu, S. Shimizu, H. Shimodaira, Assessing statistical reliability of LiNGAM via multiscale bootstrap, in: Proceedings of the International Conference on Artificial Neural Networks (ICANN2010), 2010, pp. 309-314.
    • (2010) , pp. 309-314
    • Komatsu, Y.1    Shimizu, S.2    Shimodaira, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.