메뉴 건너뛰기




Volumn 25, Issue 1, 2005, Pages 193-205

Independent component analysis of fMRI group studies by self-organizing clustering

Author keywords

Descriptive statistics; Exploratory data driven analysis; fMRI; Functional magnetic resonance imaging; Group analysis; Independent component analysis; Multi subjects analysis; Multidimensional projection; Spatial; Temporal similarity analysis

Indexed keywords

ADULT; ARTICLE; CLUSTER ANALYSIS; CONTROLLED STUDY; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; HUMAN EXPERIMENT; IMAGE ANALYSIS; INDEPENDENT COMPONENT ANALYSIS; MALE; NORMAL HUMAN; PRIORITY JOURNAL; RANDOMIZATION; TEMPORAL LOBE; VALIDATION PROCESS; VISUAL STIMULATION;

EID: 20044373625     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2004.10.042     Document Type: Article
Times cited : (307)

References (45)
  • 1
    • 1942510638 scopus 로고    scopus 로고
    • The chronoarchitecture of the human brain-Natural viewing conditions reveal a time-based anatomy of the brain
    • A. Bartels, and S. Zeki The chronoarchitecture of the human brain-Natural viewing conditions reveal a time-based anatomy of the brain NeuroImage 22 2004 419 433
    • (2004) NeuroImage , vol.22 , pp. 419-433
    • Bartels, A.1    Zeki, S.2
  • 2
    • 0029411030 scopus 로고
    • An Information-Maximisation approach to blind separation and blind deconvolution
    • A.J. Bell, and T.J. Sejnowski An Information-Maximisation approach to blind separation and blind deconvolution Neural Comput. 7 1995 1004 1034
    • (1995) Neural Comput. , vol.7 , pp. 1004-1034
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 0035054585 scopus 로고    scopus 로고
    • Independent component analysis at neural cocktail party
    • G.D. Brown, S. Yamada, and T.J. Sejnowski Independent component analysis at neural cocktail party Trends Neurosci. 24 2001 54 63
    • (2001) Trends Neurosci. , vol.24 , pp. 54-63
    • Brown, G.D.1    Yamada, S.2    Sejnowski, T.J.3
  • 4
    • 0034674377 scopus 로고    scopus 로고
    • Influence of cognitive strategies on the pattern of cortical activation during mental subtraction. a functional imaging study in human subjects
    • P. Burbaud, O. Camus, D. Guehl, B. Bioulac, J. Caille, and M. Allard Influence of cognitive strategies on the pattern of cortical activation during mental subtraction. A functional imaging study in human subjects Neurosci. Lett. 287 2000 76 80
    • (2000) Neurosci. Lett. , vol.287 , pp. 76-80
    • Burbaud, P.1    Camus, O.2    Guehl, D.3    Bioulac, B.4    Caille, J.5    Allard, M.6
  • 5
    • 0035033714 scopus 로고    scopus 로고
    • Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms
    • V.D. Calhoun, T. Adali, G.D. Pearlson, and J.J. Pekar Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms Hum. Brain Mapp. 13 2001 43 53
    • (2001) Hum. Brain Mapp. , vol.13 , pp. 43-53
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 6
    • 0035172708 scopus 로고    scopus 로고
    • FMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis
    • V.D. Calhoun, T. Adali, V.B. McGinty, J.J. Pekar, T.D. Watson, and G.D. Pearlson fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis NeuroImage 14 2001 1080 1088
    • (2001) NeuroImage , vol.14 , pp. 1080-1088
    • Calhoun, V.D.1    Adali, T.2    McGinty, V.B.3    Pekar, J.J.4    Watson, T.D.5    Pearlson, G.D.6
  • 7
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional MRI data using independent component analysis
    • V.D. Calhoun, T. Adali, G.D. Pearlson, and J.J. Pekar A method for making group inferences from functional MRI data using independent component analysis Hum. Brain Mapp. 14 2001 140 151
    • (2001) Hum. Brain Mapp. , vol.14 , pp. 140-151
    • Calhoun, V.D.1    Adali, T.2    Pearlson, G.D.3    Pekar, J.J.4
  • 9
    • 0344983772 scopus 로고    scopus 로고
    • Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain
    • V.D. Calhoun, T. Adali, J.J. Pekar, and G.D. Pearlson Latency (in)sensitive ICA. Group independent component analysis of fMRI data in the temporal frequency domain NeuroImage 20 2003 1661 1669
    • (2003) NeuroImage , vol.20 , pp. 1661-1669
    • Calhoun, V.D.1    Adali, T.2    Pekar, J.J.3    Pearlson, G.D.4
  • 10
    • 8444220526 scopus 로고    scopus 로고
    • Alcohol intoxication effects on simulated driving: Exploring alcohol-dose effects on brain activation using functional MRI
    • V.D. Calhoun, J.J. Pekar, and G.D. Pearlson Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI Neuropsychopharmacology 29 11 2004 2097 2117
    • (2004) Neuropsychopharmacology , vol.29 , Issue.11 , pp. 2097-2117
    • Calhoun, V.D.1    Pekar, J.J.2    Pearlson, G.D.3
  • 12
    • 3242706169 scopus 로고    scopus 로고
    • Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis
    • H. Chen, and D. Yao Discussion on the choice of separated components in fMRI data analysis by spatial independent component analysis Magn. Reson. Imaging 22 2004 827 833
    • (2004) Magn. Reson. Imaging , vol.22 , pp. 827-833
    • Chen, H.1    Yao, D.2
  • 13
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets
    • P. Demartines, and J. Herault Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets IEEE Trans. Neural Netw. 8 1997 148 154
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 15
    • 0036301035 scopus 로고    scopus 로고
    • Spatial independent component analysis of functional MRI time-series: To what extent do results depend on the algorithm used?
    • F. Esposito, E. Formisano, E. Seifritz, R. Goebel, R. Morrone, G. Tedeschi, and F. Di Salle Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum. Brain Mapp. 16 2002 146 157
    • (2002) Hum. Brain Mapp. , vol.16 , pp. 146-157
    • Esposito, F.1    Formisano, E.2    Seifritz, E.3    Goebel, R.4    Morrone, R.5    Tedeschi, G.6    Di Salle, F.7
  • 18
    • 0029984565 scopus 로고    scopus 로고
    • Functional topography: Multidimensional scaling and functional connectivity in the brain
    • K.J. Friston, C.D. Frith, P. Fletcher, P.F. Liddle, and R.S. Frackowiak Functional topography: multidimensional scaling and functional connectivity in the brain Cereb. Cortex 6 1996 156 164
    • (1996) Cereb. Cortex , vol.6 , pp. 156-164
    • Friston, K.J.1    Frith, C.D.2    Fletcher, P.3    Liddle, P.F.4    Frackowiak, R.S.5
  • 20
    • 0037422586 scopus 로고    scopus 로고
    • Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
    • M.D. Greicius, B. Krasnow, A.L. Reiss, and V. Menon Functional connectivity in the resting brain: a network analysis of the default mode hypothesis Proc. Natl. Acad. Sci. U. S. A. 100 2003 253 258
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 253-258
    • Greicius, M.D.1    Krasnow, B.2    Reiss, A.L.3    Menon, V.4
  • 22
    • 1542618117 scopus 로고    scopus 로고
    • Intersubject synchronization of cortical activity during natural vision
    • U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, and R. Malach Intersubject synchronization of cortical activity during natural vision Science 303 2004 1634 1640
    • (2004) Science , vol.303 , pp. 1634-1640
    • Hasson, U.1    Nir, Y.2    Levy, I.3    Fuhrmann, G.4    Malach, R.5
  • 23
    • 3042594840 scopus 로고    scopus 로고
    • Validating the independent components of neuroimaging time series via clustering and visualization
    • J. Himberg, A. Hyvarinen, and F. Esposito Validating the independent components of neuroimaging time series via clustering and visualization NeuroImage 22 3 2004 1214 1222
    • (2004) NeuroImage , vol.22 , Issue.3 , pp. 1214-1222
    • Himberg, J.1    Hyvarinen, A.2    Esposito, F.3
  • 24
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen Fast and robust fixed-point algorithms for independent component analysis IEEE Trans. Neural Netw. 10 1999 626 634
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 626-634
    • Hyvärinen, A.1
  • 27
    • 0345734447 scopus 로고    scopus 로고
    • Group analysis in functional neuroimaging: Selecting subjects using similarity measures
    • F. Kherif, J.B. Poline, S. Meriaux, H. Benali, G. Flandin, and M. Brett Group analysis in functional neuroimaging: selecting subjects using similarity measures NeuroImage 20 2003 2197 2208
    • (2003) NeuroImage , vol.20 , pp. 2197-2208
    • Kherif, F.1    Poline, J.B.2    Meriaux, S.3    Benali, H.4    Flandin, G.5    Brett, M.6
  • 29
    • 14244251265 scopus 로고    scopus 로고
    • Isolation and minimization of effects of motion on fMRI using multiple reference images
    • R. Liao, J. Krolik, and M.J. McKeown Isolation and minimization of effects of motion on fMRI using multiple reference images Proc. ISBI 2004 916 919
    • (2004) Proc. ISBI , pp. 916-919
    • Liao, R.1    Krolik, J.2    McKeown, M.J.3
  • 30
    • 0033950516 scopus 로고    scopus 로고
    • Detection of consistently task-related activations in fMRI data with hybrid independent component analysis
    • M.J. McKeown Detection of consistently task-related activations in fMRI data with hybrid independent component analysis NeuroImage 11 2000 24 35
    • (2000) NeuroImage , vol.11 , pp. 24-35
    • McKeown, M.J.1
  • 33
    • 0242404415 scopus 로고    scopus 로고
    • Independent component analysis of functional MRI: What is signal and what is noise?
    • M.J. McKeown, L.K. Hansen, and T.J. Sejnowsk Independent component analysis of functional MRI: what is signal and what is noise? Curr. Opin. Neurobiol. 13 2003 620 629
    • (2003) Curr. Opin. Neurobiol. , vol.13 , pp. 620-629
    • McKeown, M.J.1    Hansen, L.K.2    Sejnowsk, T.J.3
  • 34
    • 0002984579 scopus 로고
    • Review of the development of multidimensional scaling methods
    • A. Mead Review of the development of multidimensional scaling methods Statistician 41 1992 27 39
    • (1992) Statistician , vol.41 , pp. 27-39
    • Mead, A.1
  • 35
    • 0033563074 scopus 로고    scopus 로고
    • An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems
    • B.S. Peterson, P. Skudlarski, J.C. Gatenby, H. Zhang, A.W. Anderson, and J.C. Gore An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems Biol. Psychiatry 45 1999 1237 1258
    • (1999) Biol. Psychiatry , vol.45 , pp. 1237-1258
    • Peterson, B.S.1    Skudlarski, P.2    Gatenby, J.C.3    Zhang, H.4    Anderson, A.W.5    Gore, J.C.6
  • 38
    • 1542319069 scopus 로고    scopus 로고
    • Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data
    • V. Schmithorst, and S.K. Holland Comparison of three methods for generating group statistical inferences from independent component analysis of functional magnetic resonance imaging data J. Magn. Reson. Imaging 19 2004 365 368
    • (2004) J. Magn. Reson. Imaging , vol.19 , pp. 365-368
    • Schmithorst, V.1    Holland, S.K.2
  • 44
    • 84950351930 scopus 로고
    • Multidimensional scaling I-Theory and methods
    • W. Torgerson Multidimensional scaling I-Theory and methods Psychometrica 17 1952 401 419
    • (1952) Psychometrica , vol.17 , pp. 401-419
    • Torgerson, W.1
  • 45
    • 0006519201 scopus 로고    scopus 로고
    • Report A57. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland.
    • Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., 2000. SOM toolbox for Matlab 5. Report A57. Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland.
    • (2000) SOM Toolbox for Matlab 5
    • Vesanto, J.1    Himberg, J.2    Alhoniemi, E.3    Parhankangas, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.