-
1
-
-
0034832620
-
Outlier detection for high dimensional data
-
c. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 200 1, pp. 37-46.
-
SIGMOD
, vol.200
, Issue.1
, pp. 37-46
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
2
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1 998, pp. 94-105. (Pubitemid 128655960)
-
(1998)
SIGMOD Record
, vol.27
, Issue.2
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
3
-
-
47249137675
-
DUSC: Dimensionality unbiased subspace clustering
-
I. Assent, R. Krieger, E. Miiller, and T. Seidl, "DUSC: Dimensionality unbiased subspace clustering," in ICDM, 2007, pp. 409-4 14.
-
(2007)
ICDM
, pp. 409-414
-
-
Assent, I.1
Krieger, R.2
Miiller, E.3
Seidl, T.4
-
5
-
-
0002086686
-
When is nearest neighbors meaningful
-
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, "When is nearest neighbors meaningful," in IDBT, 1999, pp. 2 17-235.
-
(1999)
IDBT
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
6
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
M. Breunig, H.-P' Kriegel, R. Ng, and J. Sander, "LOF: Identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
-
(2000)
SIGMOD
, pp. 93-104
-
-
Breunig, M.1
Kriegel H.-P'2
Ng, R.3
Sander, J.4
-
9
-
-
0037410488
-
Discovering cluster-based local outliers
-
Z. H e, X. X u, and S. Deng, "Discovering cluster-based local outliers," Pattern Recognition Letters, vol. 24, no. 9-I0, pp. 1641-1650, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.9-10
, pp. 1641-1650
-
-
He, Z.1
Xu, X.2
Deng, S.3
-
11
-
-
2942588997
-
Density-connected subspace clustering for high-dimensional data
-
K. Kailing, H.-P' Kriegel, and P. Kroger, "Density-connected subspace clustering for high-dimensional data," in SDM, 2004, pp. 246-257.
-
(2004)
SDM
, pp. 246-257
-
-
Kailing, K.1
Kriegel H.-P'2
Kroger, P.3
-
12
-
-
0034133513
-
Distance-based outliers: Algorithms and applications
-
E. Knorr, R. Ng, and V. Tucakov, "Distance-based outliers: algorithms and applications," VLDB Journal, vol. 8, no. 3, pp. 237-253, 2000.
-
(2000)
VLDB Journal
, vol.8
, Issue.3
, pp. 237-253
-
-
Knorr, E.1
Ng, R.2
Tucakov, V.3
-
13
-
-
67650661596
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
-
(2009)
PAKDD
, pp. 831-838
-
-
Kriegel, H.-P.1
Kroger, P.2
Schubert, E.3
Zimek, A.4
-
14
-
-
67149084291
-
Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P. Kriegel, P. Kroger, and A. Zimek, "Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering," ACM TKDD, vol. 3, no. I, pp. 1-58, 2009.
-
(2009)
ACM TKDD
, vol.3
, Issue.1
, pp. 1-58
-
-
Kriegel, H.-P.1
Kroger, P.2
Zimek, A.3
-
15
-
-
65449145220
-
Angle-based outlier detection in high-dimensional data
-
H.-P. Kriegel, M. Schubert, and A. Zimek, "Angle-based outlier detection in high-dimensional data," in KDD, 2008, pp. 444-452.
-
(2008)
KDD
, pp. 444-452
-
-
Kriegel, H.-P.1
Schubert, M.2
Zimek, A.3
-
17
-
-
67049142378
-
Isolation forest
-
F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation forest," in ICDM, 2008, pp. 413-422.
-
(2008)
ICDM
, pp. 413-422
-
-
Liu, F.T.1
Ting, K.M.2
Zhou, Z.-H.3
-
18
-
-
65449163900
-
Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
-
G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering," in KDD, 2008, pp. 533-541.
-
(2008)
KDD
, pp. 533-541
-
-
Moise, G.1
Sander, J.2
-
19
-
-
77951149821
-
Relevant Subspace Clustering: Mining the most interesting non-redundant concepts in high dimensional data
-
E. Miiller, I. Assent, S. Giinnemann, R. Krieger, and T. Seidl, "Relevant Subspace Clustering: mining the most interesting non-redundant concepts in high dimensional data," in ICDM, 2009, pp. 377-3 86.
-
(2009)
ICDM
, pp. 377-386
-
-
Miiller, E.1
Assent, I.2
Giinnemann, S.3
Krieger, R.4
Seidl, T.5
-
20
-
-
50249129339
-
Outrank: Ranking outliers in high dimensional data
-
E. Miiller, I. Assent, U. Steinhausen, and T. Seidl, "Outrank: Ranking outliers in high dimensional data," in DBRank Workshop, 2008, pp. 600-603.
-
(2008)
DBRank Workshop
, pp. 600-603
-
-
Miiller, E.1
Assent, I.2
Steinhausen, U.3
Seidl, T.4
-
21
-
-
84865086248
-
Evaluating clustering in subspace projections of high dimensional data
-
E. Miiller, S. Giinnemann, I. Assent, and T. Seidl, "Evaluating clustering in subspace projections of high dimensional data," in VLDB, 2009, pp. 1270-1281.
-
(2009)
VLDB
, pp. 1270-1281
-
-
Miiller, E.1
Giinnemann, S.2
Assent, I.3
Seidl, T.4
-
22
-
-
77958047461
-
SOREX: Subspace outlier ranking exploration toolkit
-
E. Miiller, M. Schiffer, P. Gerwert, M. Hannen, T. Jansen, and T. Seidl, "SOREX: Subspace outlier ranking exploration toolkit," in ECML PKDD, 201 0, pp. 607-61 0.
-
(2010)
ECML PKDD
, pp. 607-610
-
-
Miiller, E.1
Schiffer, M.2
Gerwert, P.3
Hannen, M.4
Jansen, T.5
Seidl, T.6
-
23
-
-
78651279991
-
Adaptive outlierness for subspace outlier ranking
-
E. Miiller, M. Schiffer, and T. Seidl, "Adaptive outlierness for subspace outlier ranking," in CIKM, 2010, pp. 1629-1 632.
-
(2010)
CIKM
, pp. 1629-1632
-
-
Miiller, E.1
Schiffer, M.2
Seidl, T.3
-
24
-
-
0345359208
-
LOCI: Fast outlier detection using the local correlation integral
-
S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
-
(2003)
ICDE
, pp. 315-326
-
-
Papadimitriou, S.1
Kitagawa, H.2
Gibbons, P.3
Faloutsos, C.4
-
25
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: a review," SIGKDD Explor. News!., vol. 6, no. I, pp. 90-105, 2004.
-
(2004)
SIGKDD Explor. News!.
, vol.6
, Issue.1
, pp. 90-105
-
-
Parsons, L.1
Haque, E.2
Liu, H.3
-
27
-
-
0002965815
-
The proof and measurement of association between two things
-
C. Spearman, "The proof and measurement of association between two things," American Journal of Psychology, vol. 15, no. I, pp. 72-101, 1987.
-
(1987)
American Journal of Psychology
, vol.15
, Issue.1
, pp. 72-101
-
-
Spearman, C.1
-
28
-
-
0000634854
-
Use of the kolmogorov-smirnov cramer-von mises and related statistics without extensive tables
-
M. Stephens, "Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables," Journal of the Royal Statistical Society. Series B, pp. 115-122, 1970.
-
(1970)
Journal of the Royal Statistical Society. Series B
, pp. 115-122
-
-
Stephens, M.1
|