메뉴 건너뛰기




Volumn , Issue , 2011, Pages 434-445

Statistical selection of relevant subspace projections for outlier ranking

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE DEGREE; DATA ANALYSIS; DATA SPACE; HIGH CONTRAST; MEASURING DEVIATION; OUTLIER MINING; RANKING APPROACH; STATISTICAL SELECTION; SUBSPACE PROJECTION; SYNTHETIC DATA;

EID: 79957856197     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2011.5767916     Document Type: Conference Paper
Times cited : (108)

References (28)
  • 1
    • 0034832620 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • c. C. Aggarwal and P. S. Yu, "Outlier detection for high dimensional data," in SIGMOD, 200 1, pp. 37-46.
    • SIGMOD , vol.200 , Issue.1 , pp. 37-46
    • Aggarwal, C.C.1    Yu, P.S.2
  • 2
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," in SIGMOD, 1 998, pp. 94-105. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 47249137675 scopus 로고    scopus 로고
    • DUSC: Dimensionality unbiased subspace clustering
    • I. Assent, R. Krieger, E. Miiller, and T. Seidl, "DUSC: Dimensionality unbiased subspace clustering," in ICDM, 2007, pp. 409-4 14.
    • (2007) ICDM , pp. 409-414
    • Assent, I.1    Krieger, R.2    Miiller, E.3    Seidl, T.4
  • 6
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • M. Breunig, H.-P' Kriegel, R. Ng, and J. Sander, "LOF: Identifying density-based local outliers," in SIGMOD, 2000, pp. 93-104.
    • (2000) SIGMOD , pp. 93-104
    • Breunig, M.1    Kriegel H.-P'2    Ng, R.3    Sander, J.4
  • 9
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • Z. H e, X. X u, and S. Deng, "Discovering cluster-based local outliers," Pattern Recognition Letters, vol. 24, no. 9-I0, pp. 1641-1650, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1641-1650
    • He, Z.1    Xu, X.2    Deng, S.3
  • 11
    • 2942588997 scopus 로고    scopus 로고
    • Density-connected subspace clustering for high-dimensional data
    • K. Kailing, H.-P' Kriegel, and P. Kroger, "Density-connected subspace clustering for high-dimensional data," in SDM, 2004, pp. 246-257.
    • (2004) SDM , pp. 246-257
    • Kailing, K.1    Kriegel H.-P'2    Kroger, P.3
  • 12
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: Algorithms and applications
    • E. Knorr, R. Ng, and V. Tucakov, "Distance-based outliers: algorithms and applications," VLDB Journal, vol. 8, no. 3, pp. 237-253, 2000.
    • (2000) VLDB Journal , vol.8 , Issue.3 , pp. 237-253
    • Knorr, E.1    Ng, R.2    Tucakov, V.3
  • 13
    • 67650661596 scopus 로고    scopus 로고
    • Outlier detection in axis-parallel subspaces of high dimensional data
    • H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek, "Outlier detection in axis-parallel subspaces of high dimensional data," in PAKDD, 2009, pp. 831-838.
    • (2009) PAKDD , pp. 831-838
    • Kriegel, H.-P.1    Kroger, P.2    Schubert, E.3    Zimek, A.4
  • 14
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kroger, and A. Zimek, "Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering," ACM TKDD, vol. 3, no. I, pp. 1-58, 2009.
    • (2009) ACM TKDD , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.-P.1    Kroger, P.2    Zimek, A.3
  • 15
    • 65449145220 scopus 로고    scopus 로고
    • Angle-based outlier detection in high-dimensional data
    • H.-P. Kriegel, M. Schubert, and A. Zimek, "Angle-based outlier detection in high-dimensional data," in KDD, 2008, pp. 444-452.
    • (2008) KDD , pp. 444-452
    • Kriegel, H.-P.1    Schubert, M.2    Zimek, A.3
  • 17
    • 67049142378 scopus 로고    scopus 로고
    • Isolation forest
    • F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation forest," in ICDM, 2008, pp. 413-422.
    • (2008) ICDM , pp. 413-422
    • Liu, F.T.1    Ting, K.M.2    Zhou, Z.-H.3
  • 18
    • 65449163900 scopus 로고    scopus 로고
    • Finding non-redundant, statistically significant regions in high dimensional data: A novel approach to projected and subspace clustering
    • G. Moise and J. Sander, "Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering," in KDD, 2008, pp. 533-541.
    • (2008) KDD , pp. 533-541
    • Moise, G.1    Sander, J.2
  • 19
    • 77951149821 scopus 로고    scopus 로고
    • Relevant Subspace Clustering: Mining the most interesting non-redundant concepts in high dimensional data
    • E. Miiller, I. Assent, S. Giinnemann, R. Krieger, and T. Seidl, "Relevant Subspace Clustering: mining the most interesting non-redundant concepts in high dimensional data," in ICDM, 2009, pp. 377-3 86.
    • (2009) ICDM , pp. 377-386
    • Miiller, E.1    Assent, I.2    Giinnemann, S.3    Krieger, R.4    Seidl, T.5
  • 21
    • 84865086248 scopus 로고    scopus 로고
    • Evaluating clustering in subspace projections of high dimensional data
    • E. Miiller, S. Giinnemann, I. Assent, and T. Seidl, "Evaluating clustering in subspace projections of high dimensional data," in VLDB, 2009, pp. 1270-1281.
    • (2009) VLDB , pp. 1270-1281
    • Miiller, E.1    Giinnemann, S.2    Assent, I.3    Seidl, T.4
  • 23
    • 78651279991 scopus 로고    scopus 로고
    • Adaptive outlierness for subspace outlier ranking
    • E. Miiller, M. Schiffer, and T. Seidl, "Adaptive outlierness for subspace outlier ranking," in CIKM, 2010, pp. 1629-1 632.
    • (2010) CIKM , pp. 1629-1632
    • Miiller, E.1    Schiffer, M.2    Seidl, T.3
  • 24
    • 0345359208 scopus 로고    scopus 로고
    • LOCI: Fast outlier detection using the local correlation integral
    • S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, "LOCI: Fast outlier detection using the local correlation integral," in ICDE, 2003, pp. 315-326.
    • (2003) ICDE , pp. 315-326
    • Papadimitriou, S.1    Kitagawa, H.2    Gibbons, P.3    Faloutsos, C.4
  • 25
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data: a review," SIGKDD Explor. News!., vol. 6, no. I, pp. 90-105, 2004.
    • (2004) SIGKDD Explor. News!. , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 27
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • C. Spearman, "The proof and measurement of association between two things," American Journal of Psychology, vol. 15, no. I, pp. 72-101, 1987.
    • (1987) American Journal of Psychology , vol.15 , Issue.1 , pp. 72-101
    • Spearman, C.1
  • 28
    • 0000634854 scopus 로고
    • Use of the kolmogorov-smirnov cramer-von mises and related statistics without extensive tables
    • M. Stephens, "Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables," Journal of the Royal Statistical Society. Series B, pp. 115-122, 1970.
    • (1970) Journal of the Royal Statistical Society. Series B , pp. 115-122
    • Stephens, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.