-
1
-
-
0002080138
-
On the surprising behavior of distance metrics in high dimensional space
-
C. C. Aggarwal, A. Hlnneburg, and D. Keim. On the surprising behavior of distance metrics in high dimensional space. In Proc. ICDT, 2001.
-
(2001)
Proc. ICDT
-
-
Aggarwal, C.C.1
Hlnneburg, A.2
Keim, D.3
-
2
-
-
0034832620
-
Outlier detection for high dimensional data
-
C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. In Proc. SIGMOD, 2001.
-
(2001)
Proc. SIGMOD
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
3
-
-
79957798213
-
Fast outlier detection in high dimensional spaces
-
F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces. In Proc. PKDD, 2002.
-
(2002)
Proc. PKDD
-
-
Angiulli, F.1
Pizzuti, C.2
-
4
-
-
85039571873
-
A linear method for deviation detection in large databases
-
A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in large databases. In Proc. KDD, 1996.
-
(1996)
Proc. KDD
-
-
Arning, A.1
Agrawal, R.2
Raghavan, P.3
-
6
-
-
77952380096
-
Mining distance-based outliers in near linear time with randomization and a simple pruning rule
-
S. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In Proc. KDD, 2003.
-
(2003)
Proc. KDD
-
-
Bay, S.1
Schwabacher, M.2
-
9
-
-
68749117876
-
A nonparametric outlier detection for efficiently discovering top-N outliers from engineering data
-
H. Fan, O. R. Zaïane, A. Foss, and J. Wu. A nonparametric outlier detection for efficiently discovering top-N outliers from engineering data. In Proc. PAKDD, 2006.
-
(2006)
Proc. PAKDD
-
-
Fan, H.1
Zaïane, O.R.2
Foss, A.3
Wu, J.4
-
10
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In IEEE. CVPR 2004, Workshop on Generative-Model Based Vision, 2004.
-
(2004)
IEEE. CVPR 2004, Workshop on Generative-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
11
-
-
4444231365
-
A survey of kernels for structured data
-
T. G. Gärtner. A survey of kernels for structured data. SIGKDD Explor. Newsl, 5(1):49 58, 2003.
-
(2003)
SIGKDD Explor. Newsl
, vol.5
, Issue.1
, pp. 49-58
-
-
Gärtner, T.G.1
-
13
-
-
1542292055
-
What is the nearest neighbor in high dimensional spaces?
-
A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neighbor in high dimensional spaces? In Proc. VLDB, 2000.
-
(2000)
Proc. VLDB
-
-
Hinneburg, A.1
Aggarwal, C.C.2
Keim, D.A.3
-
14
-
-
0035788909
-
Mining top-n local outliers in large databases
-
W. Jin, A. Tung, and J. Han. Mining top-n local outliers in large databases. In Proc. KDD, 2001.
-
(2001)
Proc. KDD
-
-
Jin, W.1
Tung, A.2
Han, J.3
-
15
-
-
40749105193
-
Ranking outliers using symmetric neighborhood relationship
-
W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking outliers using symmetric neighborhood relationship. In Proc. PAKDD, 2006.
-
(2006)
Proc. PAKDD
-
-
Jin, W.1
Tung, A.K.H.2
Han, J.3
Wang, W.4
-
16
-
-
84977797978
-
Fast computation of 2-dimensional depth contours
-
T. Johnson, I. Kwok, and R. Ng. Fast computation of 2-dimensional depth contours. In Proc. KDD, 1998.
-
(1998)
Proc. KDD
-
-
Johnson, T.1
Kwok, I.2
Ng, R.3
-
17
-
-
38049097751
-
A unified approach for mining outliers
-
E. M. Knorr and R. T. Ng. A unified approach for mining outliers. In Proc. GASCON, 1997.
-
(1997)
Proc. GASCON
-
-
Knorr, E.M.1
Ng, R.T.2
-
18
-
-
0002948319
-
Algorithms for mining distance-based outliers in large dataseis
-
E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large dataseis. In Proc. VLDB, 1998.
-
(1998)
Proc. VLDB
-
-
Knorr, E.M.1
Ng, R.T.2
-
20
-
-
0141613770
-
Efficient biased sampling for approximate clustering and outlier detection in large datasets
-
G. Kollios, D. Gunopulos, N. Koudas, and S. Berchthold. Efficient biased sampling for approximate clustering and outlier detection in large datasets. IEEE TKDE, 15(5):1170 1187, 2003.
-
(2003)
IEEE TKDE
, vol.15
, Issue.5
, pp. 1170-1187
-
-
Kollios, G.1
Gunopulos, D.2
Koudas, N.3
Berchthold, S.4
-
23
-
-
84878080825
-
An efficient reference-based approach to outlier detection in large datasets
-
Y. Pei, O. Zaïane, and Y. Gao. An efficient reference-based approach to outlier detection in large datasets. In Proc. ICDM, 2006.
-
(2006)
Proc. ICDM
-
-
Pei, Y.1
Zaïane, O.2
Gao, Y.3
-
24
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. In Proc. SIGMOD, 2000.
-
(2000)
Proc. SIGMOD
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
25
-
-
0032680362
-
A fast algorithm for the minimum covariance determinant estimator
-
P. Rousseeuw and K. Van Driessen. A fast algorithm for the minimum covariance determinant estimator. Technometrica, 41:212-223, 1999.
-
(1999)
Technometrica
, vol.41
, pp. 212-223
-
-
Rousseeuw, P.1
Van Driessen, K.2
-
28
-
-
19544393356
-
On local spatial outliers
-
P. Sun and S. Chawla. On local spatial outliers. In Proc. ICDM, 2004.
-
(2004)
Proc. ICDM
-
-
Sun, P.1
Chawla, S.2
-
29
-
-
1542326289
-
Enhancing effectiveness of outlier detections for low density patterns
-
J. Tang, Z. Chen, A. W.-C. Fu, and D. W. Cheung. Enhancing effectiveness of outlier detections for low density patterns. In Proc. PAKDD, 2002.
-
(2002)
Proc. PAKDD
-
-
Tang, J.1
Chen, Z.2
Fu, A.W.-C.3
Cheung, D.W.4
-
31
-
-
77955348025
-
Online unsupervised outlier detection using finite mixtures with discounting learning algorithms
-
G. Williams, K. Yamanishi, and J. Takeuchi. Online unsupervised outlier detection using finite mixtures with discounting learning algorithms. In Proc. KDD, 2000.
-
(2000)
Proc. KDD
-
-
Williams, G.1
Yamanishi, K.2
Takeuchi, J.3
-
32
-
-
77955382993
-
Discovering outlier filtering rules from unlabeled data: Combining a supervised learner with an unsupervised learner
-
K. Yamanishi and J. Takeuchi. Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner. In Proc. KDD, 2001.
-
(2001)
Proc. KDD
-
-
Yamanishi, K.1
Takeuchi, J.2
-
33
-
-
34548588734
-
Example-based robust outlier detection in high dimensional datasets
-
C. Zhu, H. Kitagawa, and C. Faloutsos. Example-based robust outlier detection in high dimensional datasets. In Proc. ICDM, 2005.
-
(2005)
Proc. ICDM
-
-
Zhu, C.1
Kitagawa, H.2
Faloutsos, C.3
|