-
2
-
-
0029893874
-
Mechanisms of helicase-catalyzed DNA unwinding
-
Lohman TM, Bjornson KP. Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem. 1996;65:169-214.
-
(1996)
Annu Rev Biochem
, vol.65
, pp. 169-214
-
-
Lohman, T.M.1
Bjornson, K.P.2
-
3
-
-
42449141601
-
Non-hexameric DNA helicases and translocases: Mechanisms and regulation
-
Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol. 2008;9(May):391-401.
-
(2008)
Nat Rev Mol Cell Biol
, vol.9
, Issue.MAY
, pp. 391-401
-
-
Lohman, T.M.1
Tomko, E.J.2
Wu, C.G.3
-
4
-
-
0035812836
-
Structural analysis of DNA replication fork reversal by RecG
-
Singleton MR, Scaife S, Wigley DB. Structural analysis of DNA replication fork reversal by RecG. Cell. 2001;107(1):79-89.
-
(2001)
Cell
, vol.107
, Issue.1
, pp. 79-89
-
-
Singleton, M.R.1
Scaife, S.2
Wigley, D.B.3
-
5
-
-
34548638261
-
Structure and mechanism of helicases and nucleic acid translocases
-
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem. 2007;76:23-50.
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 23-50
-
-
Singleton, M.R.1
Dillingham, M.S.2
Wigley, D.B.3
-
6
-
-
0036211179
-
Modularity and specialization in superfamily 1 and 2 helicases
-
Singleton M. Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol. 2002;184(7):1819-26.
-
(2002)
J Bacteriol
, vol.184
, Issue.7
, pp. 1819-1826
-
-
Singleton, M.1
-
7
-
-
0037294467
-
Helicase mechanisms and the coupling of helicases within macromolecular machines
-
Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines. Q Rev Biophys. 2003;36(1):1-69.
-
(2003)
Q Rev Biophys
, vol.36
, Issue.1
, pp. 1-69
-
-
Delagoutte, E.1
Von Hippel, P.H.2
-
8
-
-
0036880196
-
Helicase mechanisms and the coupling of helicases within macromolecular machines Part I: Structures and properties of isolated helicases
-
Delagoutte E, von Hippel PH. Helicase mechanisms and the coupling of helicases within macromolecular machines Part I: structures and properties of isolated helicases. Q Rev Biophys. 2002;35(4):431-78.
-
(2002)
Q Rev Biophys
, vol.35
, Issue.4
, pp. 431-478
-
-
Delagoutte, E.1
Von Hippel, P.H.2
-
9
-
-
77749322591
-
Stepwise translocation of nucleic acid motors
-
Myong S, Ha T. Stepwise translocation of nucleic acid motors. Curr Opin Struct Biol. 2010;20(1):121-7.
-
(2010)
Curr Opin Struct Biol
, vol.20
, Issue.1
, pp. 121-127
-
-
Myong, S.1
Ha, T.2
-
10
-
-
0035951425
-
A general model for nucleic acid helicases and their "coupling" within macromolecular machines
-
von Hippel PH, Delagoutte E. A general model for nucleic acid helicases and their "coupling" within macromolecular machines. Cell. 2001;104(2):177-90.
-
(2001)
Cell
, vol.104
, Issue.2
, pp. 177-190
-
-
Von Hippel, P.H.1
Delagoutte, E.2
-
11
-
-
34250792185
-
Preproteincontrolled catalysis in the helicase motor of SecA
-
Karamanou S, Gouridis G, Papanikou E, Sianidis G, Gelis I, Keramisanou D, et al. Preproteincontrolled catalysis in the helicase motor of SecA. EMBO J. 2007;26(12):2904-14.
-
(2007)
EMBO J
, vol.26
, Issue.12
, pp. 2904-2914
-
-
Karamanou, S.1
Gouridis, G.2
Papanikou, E.3
Sianidis, G.4
Gelis, I.5
Keramisanou, D.6
-
12
-
-
77957123627
-
Pathways of mammalian replication fork restart
-
Petermann E, Helleday T. Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol. 2010;11(10):683-7.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, Issue.10
, pp. 683-687
-
-
Petermann, E.1
Helleday, T.2
-
13
-
-
77954146394
-
Mechanistic and biological aspects of helicase action on damaged DNA
-
Suhasini AN, Brosh RM. Mechanistic and biological aspects of helicase action on damaged DNA. Cell Cycle. 2010;9(12):2317-29.
-
(2010)
Cell Cycle
, vol.9
, Issue.12
, pp. 2317-2329
-
-
Suhasini, A.N.1
Brosh, R.M.2
-
14
-
-
0033575671
-
The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding
-
Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 1999;18(16):4498-504.
-
(1999)
EMBO J
, vol.18
, Issue.16
, pp. 4498-4504
-
-
Bochkarev, A.1
Bochkareva, E.2
Frappier, L.3
Edwards, A.M.4
-
15
-
-
0033515425
-
Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
-
Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell. 1999;97(1):75-84.
-
(1999)
Cell
, vol.97
, Issue.1
, pp. 75-84
-
-
Velankar, S.S.1
Soultanas, P.2
Dillingham, M.S.3
Subramanya, H.S.4
Wigley, D.B.5
-
16
-
-
48249113056
-
Translocation and unwinding mechanisms of RNA and DNA helicases
-
Pyle AM. Translocation and unwinding mechanisms of RNA and DNA helicases. Annu Rev Biophys. 2008;37:317-36.
-
(2008)
Annu Rev Biophys
, vol.37
, pp. 317-336
-
-
Pyle, A.M.1
-
17
-
-
0037252143
-
The Q motif: A newly identi fi ed motif in DEAD box helicases may regulate ATP binding and hydrolysis
-
Tanner NK, Cordin O, Banroques J, Doère M, Linder P. The Q motif: a newly identi fi ed motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell. 2003;11(1):127-38.
-
(2003)
Mol Cell
, vol.11
, Issue.1
, pp. 127-138
-
-
Tanner, N.K.1
Cordin, O.2
Banroques, J.3
Doère, M.4
Linder, P.5
-
18
-
-
55549132236
-
The "glutamate switch" provides a link between ATPase activity and ligand binding in AAA+ proteins
-
Zhang X, Wigley DB. The "glutamate switch" provides a link between ATPase activity and ligand binding in AAA+ proteins. Nat Struct Mol Biol. 2008;15(11):1223-7.
-
(2008)
Nat Struct Mol Biol
, vol.15
, Issue.11
, pp. 1223-1227
-
-
Zhang, X.1
Wigley, D.B.2
-
19
-
-
31144475762
-
Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: Role of a highly conserved aromatic-rich sequence
-
Zittel MC, Keck JL. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence. Nucleic Acids Res. 2005;33(22):6982-91.
-
(2005)
Nucleic Acids Res
, vol.33
, Issue.22
, pp. 6982-6991
-
-
Zittel, M.C.1
Keck, J.L.2
-
20
-
-
34447132375
-
Structural basis for DNA duplex separation by a superfamily- 2 helicase
-
Büttner K, Nehring S, Hopfner KP. Structural basis for DNA duplex separation by a superfamily- 2 helicase. Nat Struct Mol Biol. 2007;14(7):647-52.
-
(2007)
Nat Struct Mol Biol
, vol.14
, Issue.7
, pp. 647-652
-
-
Büttner, K.1
Nehring, S.2
Hopfner, K.P.3
-
21
-
-
67649862225
-
Replication fork reversal and the maintenance of genome stability
-
Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res. 2009;37(11):3475-92.
-
(2009)
Nucleic Acids Res
, vol.37
, Issue.11
, pp. 3475-3492
-
-
Atkinson, J.1
McGlynn, P.2
-
22
-
-
1642484213
-
Interplay between DNA replication, recombination and repair based on the structure of RecG helicase
-
Briggs GS, Mahdi A, Weller GR, Wen Q, Lloyd RG. Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B Biol Sci. 2004;359(1441):49-59.
-
(2004)
Philos Trans R Soc Lond B Biol Sci
, vol.359
, Issue.1441
, pp. 49-59
-
-
Briggs, G.S.1
Mahdi, A.2
Weller, G.R.3
Wen, Q.4
Lloyd, R.G.5
-
23
-
-
0034760094
-
A step backward in advancing DNA replication: Rescue of stalled replication forks by RecG
-
Dillingham MS, Kowalczykowski SC. A step backward in advancing DNA replication: rescue of stalled replication forks by RecG. Mol Cell. 2001;8(4):734-6.
-
(2001)
Mol Cell
, vol.8
, Issue.4
, pp. 734-736
-
-
Dillingham, M.S.1
Kowalczykowski, S.C.2
-
24
-
-
0035902591
-
Rescue of stalled replication forks by RecG: Simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation
-
McGlynn P, Lloyd RG. Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci USA. 2001;98(15):8227-34.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, Issue.15
, pp. 8227-8234
-
-
McGlynn, P.1
Lloyd, R.G.2
-
25
-
-
58749113648
-
RecG interacts directly with SSB: Implications for stalled replication fork regression
-
Buss JA, Kimura Y, Bianco PR. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 2008;36(22):7029-42.
-
(2008)
Nucleic Acids Res
, vol.36
, Issue.22
, pp. 7029-7042
-
-
Buss, J.A.1
Kimura, Y.2
Bianco, P.R.3
-
26
-
-
0036184234
-
Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities
-
Gregg AV, McGlynn P, Jaktaji RP, Lloyd RG. Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell. 2002;9(2):241-51.
-
(2002)
Mol Cell
, vol.9
, Issue.2
, pp. 241-251
-
-
Gregg, A.V.1
McGlynn, P.2
Jaktaji, R.P.3
Lloyd, R.G.4
-
27
-
-
76749090152
-
Is RecG a general guardian of the bacterial genome?
-
Rudolph CJ, Upton AL, Briggs GS, Lloyd RG. Is RecG a general guardian of the bacterial genome? DNA Repair. 2010;9(3):210-23.
-
(2010)
DNA Repair
, vol.9
, Issue.3
, pp. 210-223
-
-
Rudolph, C.J.1
Upton, A.L.2
Briggs, G.S.3
Lloyd, R.G.4
-
28
-
-
78951475725
-
RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli
-
Rudolph CJ, Mahdi AA, Upton AL, Lloyd RG. RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics. 2010;186(2):473-92.
-
(2010)
Genetics
, vol.186
, Issue.2
, pp. 473-492
-
-
Rudolph, C.J.1
Mahdi, A.A.2
Upton, A.L.3
Lloyd, R.G.4
-
29
-
-
34247507350
-
Biochemistry of eukaryotic homologous recombination
-
Heyer W-D. Biochemistry of eukaryotic homologous recombination. Top Curr Genet. 2007;17:95-133.
-
(2007)
Top Curr Genet
, vol.17
, pp. 95-133
-
-
Heyer, W.-D.1
-
31
-
-
76749123854
-
The FANCM family of DNA helicases/translocases
-
Whitby MC. The FANCM family of DNA helicases/translocases. DNA Repair. 2010;9(3):224-36.
-
(2010)
DNA Repair
, vol.9
, Issue.3
, pp. 224-236
-
-
Whitby, M.C.1
-
32
-
-
34249946979
-
Role of the BLM helicase in replication fork management
-
Wu L. Role of the BLM helicase in replication fork management. DNA Repair. 2007;6(7):936-44.
-
(2007)
DNA Repair
, vol.6
, Issue.7
, pp. 936-944
-
-
Wu, L.1
-
33
-
-
77955841934
-
Metabolism of postsynaptic recombination intermediates
-
Adelman CA, Boulton SJ. Metabolism of postsynaptic recombination intermediates. FEBS Lett. 2010;584(17):3709-16.
-
(2010)
FEBS Lett
, vol.584
, Issue.17
, pp. 3709-3716
-
-
Adelman, C.A.1
Boulton, S.J.2
-
34
-
-
77649269768
-
Structural basis for the function of DEAH helicases
-
He Y, Andersen GR, Nielsen KH. Structural basis for the function of DEAH helicases. EMBO Rep. 2010;11(3):180-6.
-
(2010)
EMBO Rep
, vol.11
, Issue.3
, pp. 180-186
-
-
He, Y.1
Andersen, G.R.2
Nielsen, K.H.3
-
35
-
-
33846941210
-
Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity
-
Muzzolini L, Beuron F, Patwardhan A, Popuri V, Cui S, Niccolini B, et al. Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLoS Biol. 2007;5(2):12.
-
(2007)
PLoS Biol
, vol.5
, Issue.2
, pp. 12
-
-
Muzzolini, L.1
Beuron, F.2
Patwardhan, A.3
Popuri, V.4
Cui, S.5
Niccolini, B.6
-
36
-
-
14844296413
-
Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3 ¢ to 5 ¢ DNA helicase
-
Prakash R, Krejci L, Van Komen S, Anke Schürer K, Kramer W, Sung P. Saccharomyces cerevisiae MPH1 gene, required for homologous recombination- mediated mutation avoidance, encodes a 3 ¢ to 5 ¢ DNA helicase. J Biol Chem. 2005;280(9):7854-60.
-
(2005)
J Biol Chem
, vol.280
, Issue.9
, pp. 7854-7860
-
-
Prakash, R.1
Krejci, L.2
Van Komen, S.3
Anke Schürer, K.4
Kramer, W.5
Sung, P.6
-
37
-
-
11844252069
-
Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing
-
Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure. 2005;13(1):143-53.
-
(2005)
Structure
, vol.13
, Issue.1
, pp. 143-153
-
-
Nishino, T.1
Komori, K.2
Tsuchiya, D.3
Ishino, Y.4
Morikawa, K.5
-
38
-
-
0021185614
-
Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: Identification of a new mutation (recQ1) that blocks the RecF recombination pathway
-
Nakayama H, Nakayama K, Nakayama R, Irino N, Nakayama Y, Hanawalt PC. Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet. 1984;195(3):474-80.
-
(1984)
Mol Gen Genet
, vol.195
, Issue.3
, pp. 474-480
-
-
Nakayama, H.1
Nakayama, K.2
Nakayama, R.3
Irino, N.4
Nakayama, Y.5
Hanawalt, P.C.6
-
39
-
-
75849155802
-
RecQ helicases: Multiple structures for multiple functions?
-
Vindigni A, Hickson ID. RecQ helicases: multiple structures for multiple functions? HFSP J. 2009;3(3):153-64.
-
(2009)
HFSP J
, vol.3
, Issue.3
, pp. 153-164
-
-
Vindigni, A.1
Hickson, I.D.2
-
40
-
-
43049162175
-
RecQ helicases: Guardian angels of the DNA replication fork
-
Bachrati CZ, Hickson ID. RecQ helicases: guardian angels of the DNA replication fork. Chromosoma. 2008;117(3):219-33.
-
(2008)
Chromosoma
, vol.117
, Issue.3
, pp. 219-233
-
-
Bachrati, C.Z.1
Hickson, I.D.2
-
42
-
-
76749101923
-
Distinct roles of RECQ1 in the maintenance of genomic stability
-
Wu Y, Brosh RM. Distinct roles of RECQ1 in the maintenance of genomic stability. DNA Repair. 2010;9(3):315-24.
-
(2010)
DNA Repair
, vol.9
, Issue.3
, pp. 315-324
-
-
Wu, Y.1
Brosh, R.M.2
-
43
-
-
0037930738
-
Domain mapping of Escherichia coli RecQ de fi nes the roles of conserved Nand C-terminal regions in the RecQ family
-
Bernstein DA. Domain mapping of Escherichia coli RecQ de fi nes the roles of conserved Nand C-terminal regions in the RecQ family. Nucleic Acids Res. 2003;31(11):2778-85.
-
(2003)
Nucleic Acids Res
, vol.31
, Issue.11
, pp. 2778-2785
-
-
Bernstein, D.A.1
-
44
-
-
0141865522
-
High-resolution structure of the E. coli RecQ helicase catalytic core
-
Bernstein DA, Zittel MC, Keck JL. High-resolution structure of the E. coli RecQ helicase catalytic core. EMBO J. 2003;22(19):4910-21.
-
(2003)
EMBO J
, vol.22
, Issue.19
, pp. 4910-4921
-
-
Bernstein, D.A.1
Zittel, M.C.2
Keck, J.L.3
-
45
-
-
77953024275
-
Probing the structural basis of RecQ helicase function
-
Vindigni A, Marino F, Gileadi O. Probing the structural basis of RecQ helicase function. Biophys Chem. 2010;149(3):67-77.
-
(2010)
Biophys Chem
, vol.149
, Issue.3
, pp. 67-77
-
-
Vindigni, A.1
Marino, F.2
Gileadi, O.3
-
46
-
-
19844372703
-
Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase
-
Guo R, Rigolet P, Zargarian L, Fermandjian S, Xi XG. Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase. Nucleic Acids Res. 2005;33(10):3109-24.
-
(2005)
Nucleic Acids Res
, vol.33
, Issue.10
, pp. 3109-3124
-
-
Guo, R.1
Rigolet, P.2
Zargarian, L.3
Fermandjian, S.4
Xi, X.G.5
-
47
-
-
5644256922
-
The zinc fi nger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding
-
Liu JL, Rigolet P, Dou S-X, Wang P-Y, Xi XG. The zinc fi nger motif of Escherichia coli RecQ is implicated in both DNA binding and protein folding. J Biol Chem. 2004;279(41):42794-802.
-
(2004)
J Biol Chem
, vol.279
, Issue.41
, pp. 42794-42802
-
-
Liu, J.L.1
Rigolet, P.2
Dou, S.-X.3
Wang, P.-Y.4
Xi, X.G.5
-
48
-
-
77958026729
-
Solution structure of the HRDC domain of human Bloom syndrome protein BLM
-
Sato A, Mishima M, Nagai A, Kim S-Y, Ito Y, Hakoshima T, et al. Solution structure of the HRDC domain of human Bloom syndrome protein BLM. J Biochem. 2010;148(4):517-25.
-
(2010)
J Biochem
, vol.148
, Issue.4
, pp. 517-525
-
-
Sato, A.1
Mishima, M.2
Nagai, A.3
Kim, S.-Y.4
Ito, Y.5
Hakoshima, T.6
-
49
-
-
75149165723
-
Kinetic mechanism of DNA unwinding by the BLM helicase core and molecular basis for its low processivity
-
Yang Y, Dou S-X, Xu Y-N, Bazeille N, Wang P-Y, Rigolet P, et al. Kinetic mechanism of DNA unwinding by the BLM helicase core and molecular basis for its low processivity. Biochemistry. 2010;49(4):656-68.
-
(2010)
Biochemistry
, vol.49
, Issue.4
, pp. 656-668
-
-
Yang, Y.1
Dou, S.-X.2
Xu, Y.-N.3
Bazeille, N.4
Wang, P.-Y.5
Rigolet, P.6
-
50
-
-
60549117657
-
BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation
-
Yodh JG, Stevens BC, Kanagaraj R, Janscak P, Ha T. BLM helicase measures DNA unwound before switching strands and hRPA promotes unwinding reinitiation. EMBO J. 2009;28(4):405-16.
-
(2009)
EMBO J
, vol.28
, Issue.4
, pp. 405-416
-
-
Yodh, J.G.1
Stevens, B.C.2
Kanagaraj, R.3
Janscak, P.4
Ha, T.5
-
51
-
-
0027481120
-
The Rad3 protein from Saccharomyces cerevisiae: A DNA and DNA:RNA helicase with putative RNA helicase activity
-
Deschavanne PJ, Harosh I. The Rad3 protein from Saccharomyces cerevisiae: a DNA and DNA:RNA helicase with putative RNA helicase activity. Mol Microbiol. 1993;7(6):831-5.
-
(1993)
Mol Microbiol
, vol.7
, Issue.6
, pp. 831-835
-
-
Deschavanne, P.J.1
Harosh, I.2
-
52
-
-
77950366206
-
The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway
-
Rudolf J, Rouillon C, Schwarz-Linek U, White MF. The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res. 2010;38(3):931-41.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.3
, pp. 931-941
-
-
Rudolf, J.1
Rouillon, C.2
Schwarz-Linek, U.3
White, M.F.4
-
53
-
-
84870323168
-
Structure, function and evolution of the XPD family of iron-sulfur-containing 5 ¢ -3 ¢ DNA helicases
-
White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5 ¢ -3 ¢ DNA helicases. Biochem Soc Trans. 2009;37(Pt 3):547-51.
-
(2009)
Biochem Soc Trans
, vol.37
, Issue.PART 3
, pp. 547-551
-
-
White, M.F.1
-
54
-
-
84861551208
-
DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster
-
Wu Y, Brosh RM. DNA helicase and helicase-nuclease enzymes with a conserved iron-sulfur cluster. Nucleic Acids Res. 2012;40(10):1-14.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.10
, pp. 1-14
-
-
Wu, Y.1
Brosh, R.M.2
-
55
-
-
77954588476
-
The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair
-
Wolski SC, Kuper J, Kisker C. The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair. Biol Chem. 2010;391(7):761-5.
-
(2010)
Biol Chem
, vol.391
, Issue.7
, pp. 761-765
-
-
Wolski, S.C.1
Kuper, J.2
Kisker, C.3
-
56
-
-
76749116088
-
FANCJ: Solving problems in DNA replication
-
Hiom K. FANCJ: solving problems in DNA replication. DNA Repair. 2010;9(3):250-6.
-
(2010)
DNA Repair
, vol.9
, Issue.3
, pp. 250-256
-
-
Hiom, K.1
-
57
-
-
33748428875
-
The DNA repair helicases XPD and FancJ have essential iron-sulfur domains
-
Rudolf J, Makrantoni V, Ingledew WJ, Stark MJR, White MF. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell. 2006;23(6):801-8.
-
(2006)
Mol Cell
, vol.23
, Issue.6
, pp. 801-808
-
-
Rudolf, J.1
Makrantoni, V.2
Ingledew, W.J.3
Stark, M.J.R.4
White, M.F.5
-
58
-
-
79960377998
-
XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase
-
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair. 2011;10(7):697-713.
-
(2011)
DNA Repair
, vol.10
, Issue.7
, pp. 697-713
-
-
Fuss, J.O.1
Tainer, J.A.2
-
59
-
-
84857031313
-
Damage recognition in nucleotide excision DNA repair
-
Kuper J, Kisker C. Damage recognition in nucleotide excision DNA repair. Curr Opin Struct Biol. 2012;22(1):88-93.
-
(2012)
Curr Opin Struct Biol
, vol.22
, Issue.1
, pp. 88-93
-
-
Kuper, J.1
Kisker, C.2
-
60
-
-
84857195289
-
Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation
-
Kuper J, Wolski SC, Michels G, Kisker C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J. 2012;31(2):494-502.
-
(2012)
EMBO J
, vol.31
, Issue.2
, pp. 494-502
-
-
Kuper, J.1
Wolski, S.C.2
Michels, G.3
Kisker, C.4
-
61
-
-
44149094083
-
XPD helicase structures and activities: Insights into the cancer and aging phenotypes from XPD mutations
-
Fan L, Fuss JO, Cheng QJ, Arvai AS, Hammel M, Roberts V, et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell. 2008;133(5):789-800.
-
(2008)
Cell
, vol.133
, Issue.5
, pp. 789-800
-
-
Fan, L.1
Fuss, J.O.2
Cheng, Q.J.3
Arvai, A.S.4
Hammel, M.5
Roberts, V.6
-
62
-
-
43949110271
-
Structure of the DNA repair helicase XPD
-
Liu H, Rudolf J, Johnson KA, McMahon S, Oke M, Carter L, et al. Structure of the DNA repair helicase XPD. Cell. 2008;133(5):801-12.
-
(2008)
Cell
, vol.133
, Issue.5
, pp. 801-812
-
-
Liu, H.1
Rudolf, J.2
Johnson, K.A.3
McMahon, S.4
Oke, M.5
Carter, L.6
-
63
-
-
45849119445
-
Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD
-
Wolski SC, Kuper J, Hänzelmann P, Truglio JJ, Croteau DL, Van Houten B, et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 2008;6(6):e149.
-
(2008)
PLoS Biol
, vol.6
, Issue.6
-
-
Wolski, S.C.1
Kuper, J.2
Hänzelmann, P.3
Truglio, J.J.4
Croteau, D.L.5
Van Houten, B.6
-
64
-
-
38349091095
-
The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction
-
Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, et al. The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem. 2008;283(3):1732-43.
-
(2008)
J Biol Chem
, vol.283
, Issue.3
, pp. 1732-1743
-
-
Pugh, R.A.1
Honda, M.2
Leesley, H.3
Thomas, A.4
Lin, Y.5
Nilges, M.J.6
-
65
-
-
84857194573
-
Regulation of translocation polarity by helicase domain 1 in SF2B helicases
-
Pugh RA, Wu CG, Spies M. Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J. 2011;31(2):1-12.
-
(2011)
EMBO J
, vol.31
, Issue.2
, pp. 1-12
-
-
Pugh, R.A.1
Wu, C.G.2
Spies, M.3
-
66
-
-
53549120600
-
Ferroplasma acidarmanus RPA2 facilitates ef fi cient unwinding of forked DNA substrates by monomers of FacXPD helicase
-
Pugh RA, Lin Y, Eller C, Leesley H, Cann IKO, Spies M. Ferroplasma acidarmanus RPA2 facilitates ef fi cient unwinding of forked DNA substrates by monomers of FacXPD helicase. J Mol Biol. 2008;383(5):982-98.
-
(2008)
J Mol Biol
, vol.383
, Issue.5
, pp. 982-998
-
-
Pugh, R.A.1
Lin, Y.2
Eller, C.3
Leesley, H.4
Cann, I.K.O.5
Spies, M.6
-
67
-
-
69749086880
-
Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase
-
Honda M, Park J, Pugh RA, Ha T, Spies M. Single-molecule analysis reveals differential effect of ssDNA-binding proteins on DNA translocation by XPD helicase. Mol Cell. 2009;35(5):694-703.
-
(2009)
Mol Cell
, vol.35
, Issue.5
, pp. 694-703
-
-
Honda, M.1
Park, J.2
Pugh, R.A.3
Ha, T.4
Spies, M.5
-
68
-
-
77953570622
-
Inching over hurdles: How DNA helicases move on crowded lattices
-
Spies M, Ha T. Inching over hurdles: how DNA helicases move on crowded lattices. Cell Cycle. 2010;9(9):1742-9.
-
(2010)
Cell Cycle
, vol.9
, Issue.9
, pp. 1742-1749
-
-
Spies, M.1
Ha, T.2
-
69
-
-
34447132375
-
Structural basis for DNA duplex separation by a superfamily- 2 helicase
-
Büttner K, Nehring S, Hopfner K-P. Structural basis for DNA duplex separation by a superfamily- 2 helicase. Nat Struct Mol Biol. 2007;14(7):647-52.
-
(2007)
Nat Struct Mol Biol
, vol.14
, Issue.7
, pp. 647-652
-
-
Büttner, K.1
Nehring, S.2
Hopfner, K.-P.3
-
70
-
-
41949094586
-
Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains
-
Richards JD, Johnson KA, Liu H, McRobbie A-M, McMahon S, Oke M, et al. Structure of the DNA repair helicase hel308 reveals DNA binding and autoinhibitory domains. J Biol Chem. 2008;283(8):5118-26.
-
(2008)
J Biol Chem
, vol.283
, Issue.8
, pp. 5118-5126
-
-
Richards, J.D.1
Johnson, K.A.2
Liu, H.3
McRobbie, A.-M.4
McMahon, S.5
Oke, M.6
-
71
-
-
79955811415
-
Nucleosome structure(s) and stability: Variations on a theme
-
Andrews AJ, Luger K. Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys. 2011;40:99-117.
-
(2011)
Annu Rev Biophys
, vol.40
, pp. 99-117
-
-
Andrews, A.J.1
Luger, K.2
-
72
-
-
79952539053
-
ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms
-
Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21(3):396-420.
-
(2011)
Cell Res
, vol.21
, Issue.3
, pp. 396-420
-
-
Hargreaves, D.C.1
Crabtree, G.R.2
-
73
-
-
0016221697
-
Chromatin structure: A repeating unit of histones and DNA
-
Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974;184(139):868-71.
-
(1974)
Science
, vol.184
, Issue.139
, pp. 868-871
-
-
Kornberg, R.D.1
-
74
-
-
1842411320
-
Crystal structure of the nucleosome core particle at 2.8 A resolution
-
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251-60.
-
(1997)
Nature
, vol.389
, Issue.6648
, pp. 251-260
-
-
Luger, K.1
Mäder, A.W.2
Richmond, R.K.3
Sargent, D.F.4
Richmond, T.J.5
-
75
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78(1):273-304.
-
(2009)
Annu Rev Biochem
, vol.78
, Issue.1
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
76
-
-
55949108364
-
Chromatin remodeling, development and disease
-
Ko M, Sohn DH, Chung H, Seong RH. Chromatin remodeling, development and disease. Mutat Res. 2008;647(1-2):59-67.
-
(2008)
Mutat Res
, vol.647
, Issue.1-2
, pp. 59-67
-
-
Ko, M.1
Sohn, D.H.2
Chung, H.3
Seong, R.H.4
-
77
-
-
78751554993
-
Mechanism(s) of SWI/SNF-induced nucleosome mobilization
-
Liu N, Balliano A, Hayes JJ. Mechanism(s) of SWI/SNF-induced nucleosome mobilization. Chembiochem. 2010;12(2):196-204.
-
(2010)
Chembiochem
, vol.12
, Issue.2
, pp. 196-204
-
-
Liu, N.1
Balliano, A.2
Hayes, J.J.3
-
78
-
-
33745790132
-
Chromatin remodelling: The industrial revolution of DNA around histones
-
Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7(6):437-47.
-
(2006)
Nat Rev Mol Cell Biol
, vol.7
, Issue.6
, pp. 437-447
-
-
Saha, A.1
Wittmeyer, J.2
Cairns, B.R.3
-
79
-
-
77954218952
-
Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription
-
Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 2010;102(2-3):122-8.
-
(2010)
Prog Biophys Mol Biol
, vol.102
, Issue.2-3
, pp. 122-128
-
-
Tang, L.1
Nogales, E.2
Ciferri, C.3
-
80
-
-
14544308853
-
Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes
-
Mohrmann L, Verrijzer CP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta. 2005;1681(2-3):59-73.
-
(2005)
Biochim Biophys Acta
, vol.1681
, Issue.2-3
, pp. 59-73
-
-
Mohrmann, L.1
Verrijzer, C.P.2
-
81
-
-
33947638345
-
DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC
-
Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, et al. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell. 2006;24(4):559-68.
-
(2006)
Mol Cell
, vol.24
, Issue.4
, pp. 559-568
-
-
Zhang, Y.1
Smith, C.L.2
Saha, A.3
Grill, S.W.4
Mihardja, S.5
Smith, S.B.6
-
82
-
-
1542358189
-
Multiple roles for ISWI in transcription, chromosome organization and DNA replication
-
Corona DFV, Tamkun JW. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta. 2004;1677(1-3):113-9.
-
(2004)
Biochim Biophys Acta
, vol.1677
, Issue.1-3
, pp. 113-119
-
-
Corona, D.F.V.1
Tamkun, J.W.2
-
83
-
-
34147158728
-
The Chd family of chromatin remodelers
-
Marfella CGA, Imbalzano AN. The Chd family of chromatin remodelers. Mutat Res. 2007;618(1-2):30-40.
-
(2007)
Mutat Res
, vol.618
, Issue.1-2
, pp. 30-40
-
-
Marfella, C.G.A.1
Imbalzano, A.N.2
-
84
-
-
34147101544
-
INO80 subfamily of chromatin remodeling complexes
-
Bao Y, Shen X. INO80 subfamily of chromatin remodeling complexes. Mutat Res. 2007;618(1-2):18-29.
-
(2007)
Mutat Res
, vol.618
, Issue.1-2
, pp. 18-29
-
-
Bao, Y.1
Shen, X.2
-
85
-
-
0035905687
-
Processive translocation and DNA unwinding by individual RecBCD enzyme molecules
-
Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature. 2001;409(6818):374-8.
-
(2001)
Nature
, vol.409
, Issue.6818
, pp. 374-378
-
-
Bianco, P.R.1
Brewer, L.R.2
Corzett, M.3
Balhorn, R.4
Yeh, Y.5
Kowalczykowski, S.C.6
-
86
-
-
33846936301
-
Mechanisms of nucleic acid translocases: Lessons from structural biology and single-molecule biophysics
-
Hopfner K-P, Michaelis J. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Curr Opin Struct Biol. 2007;17(1):87-95.
-
(2007)
Curr Opin Struct Biol
, vol.17
, Issue.1
, pp. 87-95
-
-
Hopfner, K.-P.1
Michaelis, J.2
-
87
-
-
77957141376
-
Insight into helicase mechanism and function revealed through single-molecule approaches
-
Yodh JG, Schlierf M, Ha T. Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys. 2010;43(2):185-217.
-
(2010)
Q Rev Biophys
, vol.43
, Issue.2
, pp. 185-217
-
-
Yodh, J.G.1
Schlierf, M.2
Ha, T.3
-
88
-
-
0033519722
-
Oligomeric ring structure of the Bloom's syndrome helicase
-
Karow JK, Newman RH, Freemont PS, Hickson ID. Oligomeric ring structure of the Bloom's syndrome helicase. Curr Biol. 1999;9(11):597-600.
-
(1999)
Curr Biol
, vol.9
, Issue.11
, pp. 597-600
-
-
Karow, J.K.1
Newman, R.H.2
Freemont, P.S.3
Hickson, I.D.4
-
89
-
-
3142708510
-
RPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases
-
Garcia PL, Bradley G, Hayes CJ, Krintel S, Soultanas P, Janscak P. RPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases. Nucleic Acids Res. 2004;32(12):3771-8.
-
(2004)
Nucleic Acids Res
, vol.32
, Issue.12
, pp. 3771-3778
-
-
Garcia, P.L.1
Bradley, G.2
Hayes, C.J.3
Krintel, S.4
Soultanas, P.5
Janscak, P.6
-
90
-
-
41349092240
-
Opening of nucleic-acid double strands by helicases: Active versus passive opening
-
Betterton M, Jülicher F. Opening of nucleic-acid double strands by helicases: active versus passive opening. Phys Rev E. 2005;71(1):1-11.
-
(2005)
Phys Rev e
, vol.71
, Issue.1
, pp. 1-11
-
-
Betterton, M.1
Jülicher, F.2
-
91
-
-
30144436268
-
RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP
-
Dumont S, Cheng W, Serebrov V, Beran RK, Tinoco I, Pyle AM, et al. RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature. 2006;439(7072):105-8.
-
(2006)
Nature
, vol.439
, Issue.7072
, pp. 105-108
-
-
Dumont, S.1
Cheng, W.2
Serebrov, V.3
Beran, R.K.4
Tinoco, I.5
Pyle, A.M.6
-
92
-
-
77956523183
-
Active and passive mechanisms of helicases
-
Manosas M, Xi XG, Bensimon D, Croquette V. Active and passive mechanisms of helicases. Nucleic Acids Res. 2010;38(16):5518-26.
-
(2010)
Nucleic Acids Res
, vol.38
, Issue.16
, pp. 5518-5526
-
-
Manosas, M.1
Xi, X.G.2
Bensimon, D.3
Croquette, V.4
-
93
-
-
77952392122
-
Mutual inhibition of RecQ molecules in DNA unwinding
-
Pan B-Y, Dou S-X, Yang Y, Xu Y-N, Bugnard E, Ding X-Y, et al. Mutual inhibition of RecQ molecules in DNA unwinding. J Biol Chem. 2010;285(21):15884- 93.
-
(2010)
J Biol Chem
, vol.285
, Issue.21
, pp. 15884-15893
-
-
Pan, B.-Y.1
Dou, S.-X.2
Yang, Y.3
Xu, Y.-N.4
Bugnard, E.5
Ding, X.-Y.6
-
94
-
-
77953965074
-
Ensemble and single-molecule fl uorescence-based assays to monitor DNA binding, translocation, and unwinding by iron-sulfur cluster containing helicases
-
Pugh RA, Honda M, Spies M. Ensemble and single-molecule fl uorescence-based assays to monitor DNA binding, translocation, and unwinding by iron-sulfur cluster containing helicases. Methods. 2010;51(3):313-21.
-
(2010)
Methods
, vol.51
, Issue.3
, pp. 313-321
-
-
Pugh, R.A.1
Honda, M.2
Spies, M.3
-
95
-
-
84857127226
-
DNA charge transport as a fi rst step in coordinating the detection of lesions by repair proteins
-
Sontz P, Mui T, Fuss J, Tainer JA, Barton JK. DNA charge transport as a fi rst step in coordinating the detection of lesions by repair proteins. Proc Natl Acad Sci U S A. 2012;109(6): 1856-61.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.6
, pp. 1856-1861
-
-
Sontz, P.1
Mui, T.2
Fuss, J.3
Tainer, J.A.4
Barton, J.K.5
-
96
-
-
33748713412
-
Rad54: The Swiss Army knife of homologous recombination?
-
Heyer W-D, Li X, Rolfsmeier M, Zhang X-P. Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res. 2006;34(15):4115-25.
-
(2006)
Nucleic Acids Res
, vol.34
, Issue.15
, pp. 4115-4125
-
-
Heyer, W.-D.1
Li, X.2
Rolfsmeier, M.3
Zhang, X.-P.4
-
97
-
-
76749102971
-
Rad54, the motor of homologous recombination
-
Mazin AV, Mazina OM, Bugreev DV, Rossi MJ. Rad54, the motor of homologous recombination. DNA Repair. 2010;9(3):286-302.
-
(2010)
DNA Repair
, vol.9
, Issue.3
, pp. 286-302
-
-
Mazin, A.V.1
Mazina, O.M.2
Bugreev, D.V.3
Rossi, M.J.4
-
98
-
-
0035902524
-
The architecture of the human Rad54-DNA complex provides evidence for protein translocation along DNA
-
Ristic D, Wyman C, Paulusma C, Kanaar R. The architecture of the human Rad54-DNA complex provides evidence for protein translocation along DNA. Proc Natl Acad Sci USA. 2001;98(15):8454-60.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, Issue.15
, pp. 8454-8460
-
-
Ristic, D.1
Wyman, C.2
Paulusma, C.3
Kanaar, R.4
-
99
-
-
33745498749
-
Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules
-
Amitani I, Baskin RJ, Kowalczykowski SC. Visualization of Rad54, a chromatin remodeling protein, translocating on single DNA molecules. Mol Cell. 2006;23(1):143-8.
-
(2006)
Mol Cell
, vol.23
, Issue.1
, pp. 143-148
-
-
Amitani, I.1
Baskin, R.J.2
Kowalczykowski, S.C.3
-
100
-
-
35648966525
-
Single molecule imaging of Tid1/ Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules
-
Nimonkar AV, Amitani I, Baskin RJ, Kowalczykowski SC. Single molecule imaging of Tid1/ Rdh54, a Rad54 homolog that translocates on duplex DNA and can disrupt joint molecules. J Biol Chem. 2007;282(42):30776-84.
-
(2007)
J Biol Chem
, vol.282
, Issue.42
, pp. 30776-30784
-
-
Nimonkar, A.V.1
Amitani, I.2
Baskin, R.J.3
Kowalczykowski, S.C.4
-
101
-
-
41849142342
-
Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle
-
Lewis R, Dürr H, Hopfner K-P, Michaelis J. Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle. Nucleic Acids Res. 2008;36(6):1881-90.
-
(2008)
Nucleic Acids Res
, vol.36
, Issue.6
, pp. 1881-1890
-
-
Lewis, R.1
Dürr, H.2
Hopfner, K.-P.3
Michaelis, J.4
-
102
-
-
33749150994
-
Snf2 family ATPases and DExx box helicases: Differences and unifying concepts from high-resolution crystal structures
-
Dürr H, Flaus A, Owen-Hughes T, Hopfner K-P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 2006;34(15):4160-7.
-
(2006)
Nucleic Acids Res
, vol.34
, Issue.15
, pp. 4160-4167
-
-
Dürr, H.1
Flaus, A.2
Owen-Hughes, T.3
Hopfner, K.-P.4
-
103
-
-
84871822927
-
Protein-DNA interactions in high speed AFM: Single molecule diffusion analysis of human RAD54
-
Sanchez H, Suzuki Y, Yokokawa M, Takeyasu K, Wyman C. Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54. Integr Biol. 2011;21(4):546-56.
-
(2011)
Integr Biol
, vol.21
, Issue.4
, pp. 546-556
-
-
Sanchez, H.1
Suzuki, Y.2
Yokokawa, M.3
Takeyasu, K.4
Wyman, C.5
-
104
-
-
72949099482
-
The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes
-
Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, et al. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature. 2009;462(7276):1016-21.
-
(2009)
Nature
, vol.462
, Issue.7276
, pp. 1016-1021
-
-
Racki, L.R.1
Yang, J.G.2
Naber, N.3
Partensky, P.D.4
Acevedo, A.5
Purcell, T.J.6
-
105
-
-
72949099668
-
Dynamics of nucleosome remodelling by individual ACF complexes
-
Blosser TR, Yang JG, Stone MD, Narlikar GJ, Zhuang X. Dynamics of nucleosome remodelling by individual ACF complexes. Nature. 2009;462(7276):1022- 7.
-
(2009)
Nature
, vol.462
, Issue.7276
, pp. 1022-1027
-
-
Blosser, T.R.1
Yang, J.G.2
Stone, M.D.3
Narlikar, G.J.4
Zhuang, X.5
-
106
-
-
84861551953
-
Disparity in the DNA translocase domains of SWI/SNF and ISW2
-
Dechassa ML, Hota SK, Sen P, Chatterjee N, Prasad P, Bartholomew B. Disparity in the DNA translocase domains of SWI/SNF and ISW2. Nucleic Acids Res. 2012;40(10):4412-21.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.10
, pp. 4412-4421
-
-
Dechassa, M.L.1
Hota, S.K.2
Sen, P.3
Chatterjee, N.4
Prasad, P.5
Bartholomew, B.6
-
107
-
-
33744900357
-
Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules
-
Shundrovsky A, Smith CL, Lis JT, Peterson CL, Wang MD. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat Struct Mol Biol. 2006;13(6):549-54.
-
(2006)
Nat Struct Mol Biol
, vol.13
, Issue.6
, pp. 549-554
-
-
Shundrovsky, A.1
Smith, C.L.2
Lis, J.T.3
Peterson, C.L.4
Wang, M.D.5
-
108
-
-
33947684367
-
The ins and outs of ATP-dependent chromatin remodeling in budding yeast: Biophysical and proteomic perspectives
-
Van Vugt JJFA, Ranes M, Campsteijn C, Logie C. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. Biochim Biophys Acta. 2007;1769(3):153-71.
-
(2007)
Biochim Biophys Acta
, vol.1769
, Issue.3
, pp. 153-171
-
-
Van Vugt, J.J.F.A.1
Ranes, M.2
Campsteijn, C.3
Logie, C.4
-
109
-
-
31544454407
-
Direct observation of DNA distortion by the RSC complex
-
Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, et al. Direct observation of DNA distortion by the RSC complex. Mol Cell. 2006;21(3):417-25.
-
(2006)
Mol Cell
, vol.21
, Issue.3
, pp. 417-425
-
-
Lia, G.1
Praly, E.2
Ferreira, H.3
Stockdale, C.4
Tse-Dinh, Y.C.5
Dunlap, D.6
|