메뉴 건너뛰기




Volumn 54, Issue 4, 1998, Pages 315-321

A Bayesian neural network method for adverse drug reaction signal generation

Author keywords

Adverse drug reaction; Database

Indexed keywords

ALENDRONIC ACID; ALFUZOSIN; ANTIBIOTIC AGENT; CAPTOPRIL; CLARITHROMYCIN; DIGOXIN; FLUINDOSTATIN; LOSARTAN; MEASLES MUMPS RUBELLA VACCINE; PRAZOSIN; RUBELLA VACCINE; SERTRALINE; VENLAFAXINE;

EID: 0031871338     PISSN: 00316970     EISSN: None     Source Type: Journal    
DOI: 10.1007/s002280050466     Document Type: Article
Times cited : (859)

References (18)
  • 1
    • 0001086656 scopus 로고
    • Reporting adverse drug reactions
    • Delamothe T (1992) Reporting adverse drug reactions. Br Med J 304: 465
    • (1992) Br Med J , vol.304 , pp. 465
    • Delamothe, T.1
  • 2
    • 0029885854 scopus 로고    scopus 로고
    • Impact and credibility of the WHO adverse reaction signals
    • Fucik H, Edwards IR (1996) Impact and credibility of the WHO adverse reaction signals. Drug Inf J 30: 461-464
    • (1996) Drug Inf J , vol.30 , pp. 461-464
    • Fucik, H.1    Edwards, I.R.2
  • 5
    • 0015944767 scopus 로고
    • Systematic signalling of adverse reactions to drugs
    • Finney DJ (1974) Systematic signalling of adverse reactions to drugs. Methods Inf Med 13: 1-10
    • (1974) Methods Inf Med , vol.13 , pp. 1-10
    • Finney, D.J.1
  • 8
    • 0030135411 scopus 로고    scopus 로고
    • A higher order bayesian neural network with spiking units
    • Lansner A, Hoist A (1996) A higher order bayesian neural network with spiking units. Int J Neural Syst 7: 115-128
    • (1996) Int J Neural Syst , vol.7 , pp. 115-128
    • Lansner, A.1    Hoist, A.2
  • 9
    • 0002037186 scopus 로고
    • A one-layer feedback artificial neural network with a bayesian learning rule
    • Lansner A, Ekeberg Ö (1989) A one-layer feedback artificial neural network with a bayesian learning rule. Int J Neural Syst 1: 77-87
    • (1989) Int J Neural Syst , vol.1 , pp. 77-87
    • Lansner, A.1    Ekeberg, Ö.2
  • 11
    • 15144340020 scopus 로고    scopus 로고
    • A higher order neural network for classification and diagnosis
    • Gammerman A (ed) Wiley, Chichester
    • Holst A, Lansner A (1996) A higher order neural network for classification and diagnosis. In: Gammerman A (ed) Computational learning and probabilistic reasoning. Wiley, Chichester, pp 199-209
    • (1996) Computational Learning and Probabilistic Reasoning , pp. 199-209
    • Holst, A.1    Lansner, A.2
  • 12
    • 0027653442 scopus 로고
    • A flexible and fault tolerant query-reply system based on a Bayesian neural network
    • Holst A, Lansner A (1993) A flexible and fault tolerant query-reply system based on a Bayesian neural network. Int J Neural Syst 4: 257-267
    • (1993) Int J Neural Syst , vol.4 , pp. 257-267
    • Holst, A.1    Lansner, A.2
  • 13
    • 14844362013 scopus 로고    scopus 로고
    • Pulp quality modelling using bayesian mixture density neural networks
    • Orre R, Lansner A (1996) Pulp quality modelling using bayesian mixture density neural networks. J Syst Eng 6: 128-136
    • (1996) J Syst Eng , vol.6 , pp. 128-136
    • Orre, R.1    Lansner, A.2
  • 15
    • 4344578226 scopus 로고    scopus 로고
    • Bayesian networks for data mining
    • Heckerman D (1997) Bayesian networks for data mining. Data Mining Knowl Discovery 1: 79-119
    • (1997) Data Mining Knowl Discovery , vol.1 , pp. 79-119
    • Heckerman, D.1
  • 16
    • 0020635959 scopus 로고
    • Prikkelhoest door gebruik van captopril
    • Knoben JM (1983) Prikkelhoest door gebruik van captopril. Ned Tijdsch Geneeskd 127: 1306
    • (1983) Ned Tijdsch Geneeskd , vol.127 , pp. 1306
    • Knoben, J.M.1
  • 17
    • 0026591053 scopus 로고
    • WHO's role in international ADR monitoring
    • ten Ham M (1992) WHO's role in international ADR monitoring. Post Mark Surveillance 5: 223-230
    • (1992) Post Mark Surveillance , vol.5 , pp. 223-230
    • Ten Ham, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.