메뉴 건너뛰기




Volumn 6, Issue 12, 2012, Pages 157-164

Estimation of daily suspended sediment yield using artificial neural network and sediment rating curve in kharestan watershed, Iran

Author keywords

Artificial neural network; Kharestan watershed; Sediment rating curve; Suspended sediment yield

Indexed keywords


EID: 84872727763     PISSN: 19918178     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (30)
  • 1
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara river basin
    • (india)
    • Agarwal, A., R.D. Singh., S.K. Mishra and P.K. Bhunya, 2005. ANN-based sediment yield models for Vamsadhara river basin (india). Wat. SA. J., 31: 95-100.
    • (2005) Wat. SA. J. , vol.31 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 3
    • 48549105650 scopus 로고    scopus 로고
    • Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques
    • Chavez, P., T. Tsukatani and T. Kojiri, 2004. Operation of storage reservoir for water quality by using optimization and artificial intelligence techniques. Math. Comput. Simulat, 43: 377-386.
    • (2004) Math. Comput. Simulat , vol.43 , pp. 377-386
    • Chavez, P.1    Tsukatani, T.2    Kojiri, T.3
  • 4
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multi layer perceptrons
    • Cigizoglu, H.K., 2004. Estimation and forecasting of daily suspended sediment data by multi layer perceptrons. Advan. Wat. Res., 27: 185-195.
    • (2004) Advan. Wat. Res. , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 5
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using K-fold partitioning of neural network training data
    • Cigizoglu, H.K. and O. Kisi, 2005. Flow prediction by three back propagation techniques using K-fold partitioning of neural network training data. Nord. Hydrol. J., 36(1): 49-64.
    • (2005) Nord. Hydrol. J. , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 7
    • 78649343954 scopus 로고    scopus 로고
    • Estimation of yield sediment using artificial neural network at basin scale
    • Haghizade, A., L.T. Shui and E. Goudarzi, 2010. Estimation of yield sediment using artificial neural network at basin scale. Astalian. J. of Basic and Applied Sciences, 4(7): 1668-1675.
    • (2010) Astalian. J. of Basic and Applied Sciences , vol.4 , Issue.7 , pp. 1668-1675
    • Haghizade, A.1    Shui, L.T.2    Goudarzi, E.3
  • 8
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: Generalisation beyond the calibration range
    • Imrie, C.E., S. Durucan and A. Korre, 2000. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol., 233: 138-153.
    • (2000) J. Hydrol. , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 9
    • 69249091837 scopus 로고    scopus 로고
    • Reservoir Sedimentation Estimation Using Artificial Neural Network
    • Jothiprakash, V. and V. Garg, 2009. Reservoir Sedimentation Estimation Using Artificial Neural Network. Journal of Hydrologic Engineering, 14: 1035-1040.
    • (2009) Journal of Hydrologic Engineering , vol.14 , pp. 1035-1040
    • Jothiprakash, V.1    Garg, V.2
  • 10
    • 53549097342 scopus 로고    scopus 로고
    • Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas
    • Kim, M. and J.E. Gilley, 2008. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Compu. And Electr in Agri. J., 64: 268-275.
    • (2008) Compu. And Electr in Agri. J. , vol.64 , pp. 268-275
    • Kim, M.1    Gilley, J.E.2
  • 11
    • 48649099727 scopus 로고    scopus 로고
    • The potential of different ANN techniques in evapotranspiration modeling
    • Kisi, O., 2007. The potential of different ANN techniques in evapotranspiration modeling. Journal of Hydrological Process, 22(14): 2449-2460.
    • (2007) Journal of Hydrological Process , vol.22 , Issue.14 , pp. 2449-2460
    • Kisi, O.1
  • 12
    • 48549096154 scopus 로고    scopus 로고
    • Constructing neural network sediment estimation models using a data-driven algorithm
    • Kisi, O., 2008. Constructing neural network sediment estimation models using a data-driven algorithm. J. mathematics and Computers in Simulation, 79: 94-103.
    • (2008) J. mathematics and Computers in Simulation , vol.79 , pp. 94-103
    • Kisi, O.1
  • 13
    • 34547756974 scopus 로고    scopus 로고
    • Discussion of "Generalized regression neural networks for evapotranspiration modelling
    • Koutsoyiannis, D., 2007. Discussion of "Generalized regression neural networks for evapotranspiration modelling. J. Hydrol. Sci., 52(4): 832-835.
    • (2007) J. Hydrol. Sci. , vol.52 , Issue.4 , pp. 832-835
    • Koutsoyiannis, D.1
  • 14
    • 78650734426 scopus 로고    scopus 로고
    • Artificial neural networks approach in evapotranspiration modeling: A review
    • Kumar, M., N.S. Raghuwanshi and R. Singh, 2011. Artificial neural networks approach in evapotranspiration modeling: a review. Irrigation Science, 29(1): 11-25.
    • (2011) Irrigation Science , vol.29 , Issue.1 , pp. 11-25
    • Kumar, M.1    Raghuwanshi, N.S.2    Singh, R.3
  • 15
    • 48749131165 scopus 로고    scopus 로고
    • Turbidity-controlled suspended sediment sampling
    • Lewis, J. and R. Eads, 1996. Turbidity-controlled suspended sediment sampling. Management council networker, 6(4): 1-3.
    • (1996) Management council networker , vol.6 , Issue.4 , pp. 1-3
    • Lewis, J.1    Eads, R.2
  • 17
    • 79951680934 scopus 로고    scopus 로고
    • Suspended sediment load prediction of river systems: An artificial neural network approach
    • Melesse, A.M., S. Ahmad, M.E. McClain, X. Wang and Y.H. Lim, 2011. Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98: 855-866.
    • (2011) Agricultural Water Management , vol.98 , pp. 855-866
    • Melesse, A.M.1    Ahmad, S.2    McClain, M.E.3    Wang, X.4    Lim, Y.H.5
  • 18
    • 84872739908 scopus 로고    scopus 로고
    • Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications
    • Mustafa, M.R., M.H. Isa and R.B. Rezaur, 2012. Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications. World Academy of Science, Engineering and Technology, 62: 341-349.
    • (2012) World Academy of Science, Engineering and Technology , vol.62 , pp. 341-349
    • Mustafa, M.R.1    Isa, M.H.2    Rezaur, R.B.3
  • 19
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in river using artificial neural network model
    • Nagy, H.M., K. Watanabe and M. Hirano, 2002. Prediction of sediment load concentration in river using artificial neural network model. J. hydraul. Eng., 128(6): 588-595.
    • (2002) J. hydraul. Eng. , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 20
    • 40549084354 scopus 로고    scopus 로고
    • Event-based sediment yield modeling using artificial neural network
    • Rai, R.K. and B.S. Mathur, 2008. Event-based sediment yield modeling using artificial neural network. Wat. Res. Manage. J., 22: 423-441.
    • (2008) Wat. Res. Manage. J. , vol.22 , pp. 423-441
    • Rai, R.K.1    Mathur, B.S.2
  • 22
    • 84860426597 scopus 로고    scopus 로고
    • Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: A small agricultural watershed, Kapgari, India
    • Singh, G. and R. Panda, 2011. Daily sediment yield modeling with artificial neural network using 10-fold cross validation method: A small agricultural watershed, Kapgari, India. Inter. J. of Ear. Sci and Engi., 6(4): 443-450.
    • (2011) Inter. J. of Ear. Sci and Engi. , vol.6 , Issue.4 , pp. 443-450
    • Singh, G.1    Panda, R.2
  • 23
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer, K.P., P.C. Nayak and K.S. Ramasastri, 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Process, 17: 677-686.
    • (2003) Hydrol. Process , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 24
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur, G., 2002. Artificial neural networks for sheet sediment transport. Hydrol. Sci. J., 47(6): 879-892.
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 25
    • 0036197255 scopus 로고    scopus 로고
    • Estimation of instantaneous peak flows in Seyhan River Basin using regional regression procedures. Turk
    • For
    • Topaloulu, F., 2002. Estimation of instantaneous peak flows in Seyhan River Basin using regional regression procedures. Turk. j. Agric. For, 26: 47-55.
    • (2002) J. Agric. , vol.26 , pp. 47-55
    • Topaloulu, F.1
  • 26
    • 70349297493 scopus 로고    scopus 로고
    • Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland-Part I: Modelling framework and calibration results
    • Viviroli, D., M. Zappa, J. Schwanbeck and R. Weingartner, 2009. Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland-Part I: Modelling framework and calibration results. J. Hydro., 377: 191-207.
    • (2009) J. Hydro. , vol.377 , pp. 191-207
    • Viviroli, D.1    Zappa, M.2    Schwanbeck, J.3    Weingartner, R.4
  • 27
    • 70350075067 scopus 로고    scopus 로고
    • Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area
    • Wang, Y.M. and S. Traore, 2009. Time-lagged recurrent network for forecasting episodic event suspended sediment load in typhoon prone area. International Journal of Physical Sciences, 4(9): 519-528.
    • (2009) International Journal of Physical Sciences , vol.4 , Issue.9 , pp. 519-528
    • Wang, Y.M.1    Traore, S.2
  • 29
    • 76549088933 scopus 로고    scopus 로고
    • Neural networks approaches for modeling river suspended sediment concentration due to tropical storms
    • Wang, Y.M., T. Kerh and S. Traore, 2009. Neural networks approaches for modeling river suspended sediment concentration due to tropical storms. Global NEST Journal, 11(4): 457-466.
    • (2009) Global NEST Journal , vol.11 , Issue.4 , pp. 457-466
    • Wang, Y.M.1    Kerh, T.2    Traore, S.3
  • 30
    • 84872737508 scopus 로고    scopus 로고
    • Applied neural networks, Rulin Publishing Co, Taiwan. For Vamsadhara river basin (India)
    • Yeh, Y.C., 1997. Applied neural networks, Rulin Publishing Co, Taiwan. For Vamsadhara river basin (India). Water SA, 31(1): 95-100.
    • (1997) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Yeh, Y.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.