-
1
-
-
77956684693
-
Evaluation the efficiency of Radial Basis Function Neural Network for Prediction of water quality parameters
-
Ahmed AN, Elshafie A, Karim O, Jaffar O (2009). Evaluation the efficiency of Radial Basis Function Neural Network for Prediction of water quality parameters. Eng. Intelligent Syst., 17(4): 221-231.
-
(2009)
Eng. Intelligent Syst
, vol.17
, Issue.4
, pp. 221-231
-
-
Ahmed, A.N.1
Elshafie, A.2
Karim, O.3
Jaffar, O.4
-
2
-
-
0003679224
-
-
Stanford University, Stanford, CA
-
Crawford NH, Linsley RK (1966). Digital Simulation in Hydrology: Stanford Watershed Model IV, Technical Report 10-Department of Civil Engineering, Stanford University, Stanford, CA.
-
(1966)
Digital Simulation In Hydrology: Stanford Watershed Model IV, Technical Report 10-Department of Civil Engineering
-
-
Crawford, N.H.1
Linsley, R.K.2
-
3
-
-
23044467858
-
Fuzzy neural network model for hydrologic flow routing
-
Deka P, Chandramouli V (2005). Fuzzy neural network model for hydrologic flow routing. J. Hydrol. Eng., 10(4): 302-14.
-
(2005)
J. Hydrol. Eng
, vol.10
, Issue.4
, pp. 302-314
-
-
Deka, P.1
Chandramouli, V.2
-
4
-
-
33947693294
-
A Neuro-Fuzzy Model for Inflow Forecasting of the Nile River at Aswan High Dam
-
El-Shafie A, Reda TM, Noureldin A (2007). A Neuro-Fuzzy Model for Inflow Forecasting of the Nile River at Aswan High Dam. Water Res. Manage., 21(3): 533-556.
-
(2007)
Water Res. Manage
, vol.21
, Issue.3
, pp. 533-556
-
-
El-Shafie, A.1
Reda, T.M.2
Noureldin, A.3
-
5
-
-
63049105407
-
Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data
-
El-Shafie A, Noureldin AE, Taha MR, Basri H (2008). Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data. J. Appl. Sci., 8 (24): 4487-4499.
-
(2008)
J. Appl. Sci
, vol.8
, Issue.24
, pp. 4487-4499
-
-
El-Shafie, A.1
Noureldin, A.E.2
Taha, M.R.3
Basri, H.4
-
6
-
-
69249208624
-
Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements
-
El-Shafie A, Alaa EA, Noureldin A, Mohd RT (2009a). Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements. Water Res. Manage., 23(11): 2289-2315.
-
(2009)
Water Res. Manage
, vol.23
, Issue.11
, pp. 2289-2315
-
-
El-Shafie, A.1
Alaa, E.A.2
Noureldin, A.3
Mohd, R.T.4
-
8
-
-
84856618854
-
Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam
-
El-Shafie A, Noureldin A (2010). Generalized versus non-generalized neural network model for multi-lead inflow forecasting at Aswan High Dam. Hydrol. Earth Syst. Sci. Discussions, 7(5): 7957-7993
-
(2010)
Hydrol. Earth Syst. Sci. Discussions
, vol.7
, Issue.5
, pp. 7957-7993
-
-
El-Shafie, A.1
Noureldin, A.2
-
9
-
-
0003413187
-
Neural Networks: Comprehensive Foundation
-
Upper Saddle River, N.J, USA: Prentice-Hall
-
Haykin S (1999). Neural Networks: Comprehensive Foundation. Upper Saddle River, N.J, USA: Prentice-Hall.
-
(1999)
-
-
Haykin, S.1
-
10
-
-
0032917913
-
Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation
-
Hsu KL, Gupta HV, Gao X, Sorooshian S (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resour. Res., 35(5): 1605-18.
-
(1999)
Water Resour. Res
, vol.35
, Issue.5
, pp. 1605-1618
-
-
Hsu, K.L.1
Gupta, H.V.2
Gao, X.3
Sorooshian, S.4
-
11
-
-
79958694035
-
GIS based rainfall, runoff modeling for Hemavathi Catchment
-
NIH Report CS/AR-22/96-97, National Institute of Hydrology, Roorkee
-
Jain MK (1996). GIS based rainfall, runoff modeling for Hemavathi Catchment. NIH Report CS/AR-22/96-97, National Institute of Hydrology, Roorkee.
-
(1996)
-
-
Jain, M.K.1
-
12
-
-
0034306715
-
Setting up stage-discharge relations using ANN
-
Jain SK, Chalisgaonkar D (2000). Setting up stage-discharge relations using ANN. J. Hydrol. Eng., 5(4): 428-433.
-
(2000)
J. Hydrol. Eng
, vol.5
, Issue.4
, pp. 428-433
-
-
Jain, S.K.1
Chalisgaonkar, D.2
-
13
-
-
0032868083
-
New mathematical approaches in hydrological modeling an application of artificial neural networks
-
Lange NT (1999). New mathematical approaches in hydrological modeling an application of artificial neural networks. Phys. Chem. Earth (B), 24(1-2): 31-35.
-
(1999)
Phys. Chem. Earth (B)
, vol.24
, Issue.1-2
, pp. 31-35
-
-
Lange, N.T.1
-
14
-
-
20844462859
-
Application of an artificial neural network to typhoon rainfall forecasting
-
Lin GF, Chen LH (2005). Application of an artificial neural network to typhoon rainfall forecasting. Hydrol. Process, 19: 1825-37.
-
(2005)
Hydrol. Process
, vol.19
, pp. 1825-1837
-
-
Lin, G.F.1
Chen, L.H.2
-
15
-
-
0035104376
-
An application of artificial Neural networks for rainfall forecasting
-
Luk KC, Ball JE, Sharma A (2001). An application of artificial Neural networks for rainfall forecasting. Math. Comput. Modell., 33: 683-93.
-
(2001)
Math. Comput. Modell
, vol.33
, pp. 683-693
-
-
Luk, K.C.1
Ball, J.E.2
Sharma, A.3
-
16
-
-
65249087289
-
Prediction of johor river water quality parameters using artificial neural networks
-
Najah A, Elshafie A, Karim OA, Jaffar O (2009). Prediction of johor river water quality parameters using artificial neural networks. Euro. J. Sci. Res., 28(3): 422-435.
-
(2009)
Euro. J. Sci. Res
, vol.28
, Issue.3
, pp. 422-435
-
-
Najah, A.1
Elshafie, A.2
Karim, O.A.3
Jaffar, O.4
-
17
-
-
31044446407
-
Applied hydrology Ideterministic
-
Unpublished Lecture Notes. Department of Engineering Hydrology, National University of Ireland, Galway
-
O'Connor KM (1997). Applied hydrology Ideterministic. Unpublished Lecture Notes. Department of Engineering Hydrology, National University of Ireland, Galway.
-
(1997)
-
-
O'Connor, K.M.1
-
18
-
-
0022471098
-
Learning representations by backpropagating errors
-
Rumelhart DE, Hinton GE, Williams RJ (1986). Learning representations by backpropagating errors. Nature, 323: 533-536.
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
19
-
-
0036843660
-
Modelling evaporation using an artificial neural network algorithm
-
Sudheer KP, Gosain AK, Rangan DM, Saheb SM (2002).Modelling evaporation using an artificial neural network algorithm, Hydrol. Process. lfi, 3189-3202.
-
(2002)
Hydrol. Process. Lfi
, pp. 3189-3202
-
-
Sudheer, K.P.1
Gosain, A.K.2
Rangan, D.M.3
Saheb, S.M.4
-
20
-
-
0026895285
-
The Xinanjiang model applied in China
-
Zhao RJ (1992). The Xinanjiang model applied in China. J. Hydrol., 135: 371-381.
-
(1992)
J. Hydrol
, vol.135
, pp. 371-381
-
-
Zhao, R.J.1
-
21
-
-
0000626643
-
The Xinanjiang model
-
Singh, V.P. (Ed.), Water Resources Publications, Littleton, CO
-
Zhao RJ, Liu XR (1995). The Xinanjiang model. In: Singh, V.P. (Ed.), Computer Models of Watershed Hydrology. Water Resources Publications, Littleton, CO.
-
(1995)
Computer Models of Watershed Hydrology
-
-
Zhao, R.J.1
Liu, X.R.2
|