메뉴 건너뛰기




Volumn 4, Issue 7, 2010, Pages 1668-1675

Estimation of yield sediment using artificial neural network at basin scale

Author keywords

Artificial neural network; Keshvar station; MLP; Multiple regression; Sediment yield

Indexed keywords


EID: 78649343954     PISSN: 19918178     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (14)

References (32)
  • 1
    • 33749443208 scopus 로고    scopus 로고
    • Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data
    • Alp, M. and H.K. Cigizoglu, 2007. Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling and Software, 22(1): 2-13.
    • (2007) Environmental Modelling and Software , vol.22 , Issue.1 , pp. 2-13
    • Alp, M.1    Cigizoglu, H.K.2
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology II: hydrologic applications. Journal of Hydrologic Engineering, ASCE, 5: 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , pp. 124-137
  • 3
    • 39849091610 scopus 로고    scopus 로고
    • A genetic programming approach to suspended sediment modelling
    • Aytek, A. and Kisi, 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology, 351(3-4): 288-298.
    • (2008) Journal of Hydrology , vol.351 , Issue.3-4 , pp. 288-298
    • Aytek, A.1    Kisi2
  • 5
    • 0036499322 scopus 로고    scopus 로고
    • Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models
    • Cannon, A.J. and P.H. Whitfield, 2002. Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology, 259(1-4): 136-151.
    • (2002) Journal of Hydrology , vol.259 , Issue.1-4 , pp. 136-151
    • Cannon, A.J.1    Whitfield, P.H.2
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks/Estimation, provision et extrapolation des dobits fluviaux par rsoeaux deneurones artificiels
    • Cigizoglu, H.K., 2003. Estimation, forecasting and extrapolation of river flows by artificial neural networks/Estimation, provision et extrapolation des dobits fluviaux par rsoeaux deneurones artificiels. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 48(3): 349-361.
    • (2003) Hydrological Sciences Journal/Journal des Sciences Hydrologiques , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 7
    • 0031932822 scopus 로고    scopus 로고
    • Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers
    • Clair, T.A. and J.M. Ehrman, Using neural networks to assess the influence of changing seasonal climates in modifying discharge, dissolved organic carbon, and nitrogen export in eastern Canadian rivers. Water Resources Research, 34(3).
    • Water Resources Research , vol.34 , Issue.3
    • Clair, T.A.1    Ehrman, J.M.2
  • 8
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly, P., F. Anctil and B. Bobee, 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230(3-4): 244-257.
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 9
    • 0842289049 scopus 로고    scopus 로고
    • Assessment of evapotranspiration estimation models for use in semi-arid environments
    • DehghaniSanij, H., T. Yamamoto and V. Rasiah, 2004. Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural water management, 64(2): 91-106.
    • (2004) Agricultural water management , vol.64 , Issue.2 , pp. 91-106
    • DehghaniSanij, H.1    Yamamoto, T.2    Rasiah, V.3
  • 10
    • 0037562812 scopus 로고    scopus 로고
    • Feed forward neural networks modeling for KûP interactions
    • El-Bakry, M.Y., 2003. Feed forward neural networks modeling for KûP interactions. Chaos, Solitons and Fractals, 18(5): 995-1000.
    • (2003) Chaos, Solitons and Fractals , vol.18 , Issue.5 , pp. 995-1000
    • El-Bakry, M.Y.1
  • 11
    • 0034702917 scopus 로고    scopus 로고
    • Runoff analysis in humid forest catchment with artificial neural network
    • Gautam, M.R., K. Watanabe and H. Saegusa, 2000. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology, 235(1-2): 117-136.
    • (2000) Journal of Hydrology , vol.235 , Issue.1-2 , pp. 117-136
    • Gautam, M.R.1    Watanabe, K.2    Saegusa, H.3
  • 12
    • 28944434082 scopus 로고    scopus 로고
    • Methods to improve the neural network performance in suspended sediment estimation
    • Kerem Cigizoglu, H. and Kisi, 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317(3-4): 221-238.
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 221-238
    • Kerem, C.H.1    Kisi2
  • 13
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kisi, 2006. Daily pan evaporation modelling using a neuro-fuzzy computing technique. Journal of Hydrology, 329(3-4): 636-646.
    • (2006) Journal of Hydrology , vol.329 , Issue.3-4 , pp. 636-646
    • Kisi1
  • 14
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H.R. and G.C. Dandy, 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15(1): 101-124.
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 15
    • 0023962844 scopus 로고
    • Uncertainty in suspended sediment transport curves
    • McBean, E.A., 1988. Uncertainty in suspended sediment transport curves. Journal of Hydraulic Engineering, 114 63.
    • (1988) Journal of Hydraulic Engineering , vol.114 , pp. 63
    • McBean, E.A.1
  • 16
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • Mcculloch, W.S. and W. Pitts, 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5(4): 115-133.
    • (1943) Bulletin of Mathematical Biology , vol.5 , Issue.4 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 17
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • Nayak, P.C., K.P. Sudheer and K.S. Ramasastri, 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes, 19(4).
    • (2005) Hydrological Processes , vol.19 , Issue.4
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 20
    • 0030616293 scopus 로고    scopus 로고
    • Parameterisation, calibration and validation of distributed hydrological models
    • Refsgaard, J.C., 1997. Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1-4): 69-97.
    • (1997) Journal of Hydrology , vol.198 , Issue.1-4 , pp. 69-97
    • Refsgaard, J.C.1
  • 22
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modelling
    • Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology, 199(3-4): 272-294.
    • (1997) Journal of Hydrology , vol.199 , Issue.3-4 , pp. 272-294
    • Shamseldin, A.Y.1
  • 23
    • 0742323231 scopus 로고    scopus 로고
    • Neural networks for predicting nitrate-nitrogen in drainage water
    • Sharma, V., S.C. Negi, R.P. Rudra and S. Yang, 2003. Neural networks for predicting nitrate-nitrogen in drainage water. Agricultural water management, 63(3): 169-183.
    • (2003) Agricultural water management , vol.63 , Issue.3 , pp. 169-183
    • Sharma, V.1    Negi, S.C.2    Rudra, R.P.3    Yang, S.4
  • 24
    • 0036931372 scopus 로고    scopus 로고
    • Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, DSN 2002
    • Ref Type: Conference Proceeding
    • Shivakumar, P., M. Kistler, S.W. Keckler, D. Burger and L. Alvisi, 2002. Modeling the effect of technology trends on the soft error rate of combinational logic. Dependable Systems and Networks, DSN 2002. Proceedings.International Conference on, 389-398. Ref Type: Conference Proceeding.
    • (2002) Proceedings.International Conference on , pp. 389-398
    • Shivakumar, P.1    Kistler, M.2    Keckler, S.W.3    Burger, D.4    Alvisi, L.5
  • 25
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfallûrunoff modelling/Arbres de modFles comme alternative aux rqseaux de neurones en modqlisation pluieûdqbit
    • Solomatine, D.P. and K.N. Dulal, 2003. Model trees as an alternative to neural networks in rainfallûrunoff modelling/Arbres de modFles comme alternative aux rqseaux de neurones en modqlisation pluieûdqbit. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 48(3): 399-411.
    • (2003) Hydrological Sciences Journal/Journal des Sciences Hydrologiques , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 26
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer, K.P. and S.K. Jain, 2003. Radial basis function neural network for modeling rating curves. Journal of Hydrologic Engineering, 8: 161.
    • (2003) Journal of Hydrologic Engineering , vol.8 , pp. 161
    • Sudheer, K.P.1    Jain, S.K.2
  • 28
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A.S. and P.A. Johnson, 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering, 4(3): 232-239.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 29
    • 0030074908 scopus 로고    scopus 로고
    • SHESED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system
    • Wicks, J.M. and J.C. Bathurst, 1996. SHESED: a physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system. Journal of Hydrology, 175(1-4): 213-238.
    • (1996) Journal of Hydrology , vol.175 , Issue.1-4 , pp. 213-238
    • Wicks, J.M.1    Bathurst, J.C.2
  • 30
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfallûrunoff processes inside an artificial neural network/Dqtection des processus dÆun modFle pluieûdqbit conceptuel au sein dÆun rqseau de neurones artificiel
    • Wilby, R.L., R.J. Abrahart and C.W. Dawson, 2003. Detection of conceptual model rainfallûrunoff processes inside an artificial neural network/Dqtection des processus dÆun modFle pluieûdqbit conceptuel au sein dÆun rqseau de neurones artificiel. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 48(2): 163-181.
    • (2003) Hydrological Sciences Journal/Journal des Sciences Hydrologiques , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 31
    • 0030512054 scopus 로고    scopus 로고
    • Applications of artificial neural networks to land drainage engineering
    • Yang, C.C., S.O. Prasher and R. Lacroix, 1996. Applications of artificial neural networks to land drainage engineering. Transactions of the ASAE, 39(2): 525-533.
    • (1996) Transactions of the ASAE , vol.39 , Issue.2 , pp. 525-533
    • Yang, C.C.1    Prasher, S.O.2    Lacroix, R.3
  • 32
    • 2342561137 scopus 로고    scopus 로고
    • Development of an artificial neural network for hydrologic and water quality modeling of agricultural watersheds
    • Yu, C., W.J. Northcott and G.F. McIsaac, 2004. Development of an artificial neural network for hydrologic and water quality modeling of agricultural watersheds. Transactions of the ASAE, 47(1): 285-290.
    • (2004) Transactions of the ASAE , vol.47 , Issue.1 , pp. 285-290
    • Yu, C.1    Northcott, W.J.2    McIsaac, G.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.