메뉴 건너뛰기




Volumn 22, Issue 4, 2008, Pages 423-441

Event-based sediment yield modeling using artificial neural network

Author keywords

ANN; Automated Bayesian Regularization; Event based; Runoff; Sediment yield; Sedimentograph; Small watersheds

Indexed keywords

AUTOCORRELATION; AUTOMATA THEORY; BACKPROPAGATION; BAYESIAN NETWORKS; FEEDFORWARD NEURAL NETWORKS; FLOW RATE; GRADIENT METHODS; MEAN SQUARE ERROR; RUNOFF; TRANSFER FUNCTIONS; WATERSHEDS;

EID: 40549084354     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-007-9170-3     Document Type: Article
Times cited : (56)

References (35)
  • 1
    • 4644274685 scopus 로고    scopus 로고
    • Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data
    • Agarwal A, Singh RD (2004) Runoff modeling through back propagation artificial neural network with variable rainfall-runoff data. Water Resour Manag 18:285-300
    • (2004) Water Resour Manag , vol.18 , pp. 285-300
    • Agarwal, A.1    Singh, R.D.2
  • 2
    • 14744288721 scopus 로고    scopus 로고
    • ANN-based sediment yield models for Vamsadhara river basin (India)
    • Agarwal A, Singh RD, Mishra SK, Bhunya PK (2005) ANN-based sediment yield models for Vamsadhara river basin (India). Water SA 31(1):95-100
    • (2005) Water SA , vol.31 , Issue.1 , pp. 95-100
    • Agarwal, A.1    Singh, R.D.2    Mishra, S.K.3    Bhunya, P.K.4
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I. Preliminary concepts
    • ASCE Task committee on application of artificial neural networks in hydrology
    • ASCE Task committee on application of artificial neural networks in hydrology (2000a) Artificial neural networks in hydrology. I. Preliminary concepts. J Hydrol Eng ASCE 5(2):115-123
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • ASCE Task committee on application of artificial neural networks in hydrology
    • ASCE Task committee on application of artificial neural networks in hydrology (2000b) Artificial neural networks in hydrology. II. Hydrologic applications. J Hydrol Eng ASCE 5(2):124-137
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0036715707 scopus 로고    scopus 로고
    • Performance of neural networks in daily streamflow forecasting
    • Birikundavyi S, Labib R, Trung HT, Rousselle J (2002) Performance of neural networks in daily streamflow forecasting. J Hydrol Eng 7(5):392-398
    • (2002) J Hydrol Eng , vol.7 , Issue.5 , pp. 392-398
    • Birikundavyi, S.1    Labib, R.2    Trung, H.T.3    Rousselle, J.4
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo M, Andreussi P, Soldati A (1999) River flood forecasting with a neural network model. Water Resour Res 35(4):1191-1197
    • (1999) Water Resour Res , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 7
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multilayer perceptrons
    • Cigizoglu HK (2004) Estimation and forecasting of daily suspended sediment data by multilayer perceptrons. Adv Water Resour 27:185-195
    • (2004) Adv Water Resour , vol.27 , pp. 185-195
    • Cigizoglu, H.K.1
  • 8
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modelling
    • Dawson CW, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47-66
    • (1998) Hydrol Sci J , vol.43 , Issue.1 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 9
    • 0032123339 scopus 로고    scopus 로고
    • Runoff forecasting using RBF networks with OLS algorithm
    • Fernando DAK, Jayawardena AW (1998) Runoff forecasting using RBF networks with OLS algorithm. J Hydrol Eng ASCE 3(3):203-209
    • (1998) J Hydrol Eng ASCE , vol.3 , Issue.3 , pp. 203-209
    • Fernando, D.A.K.1    Jayawardena, A.W.2
  • 10
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to Bayesian learning
    • Foresee FD, Hagan M (1997) Gauss-Newton approximation to Bayesian learning. IEEE Proc of Conf on ANN 4:1930-1935
    • (1997) IEEE Proc of Conf on ANN , vol.4 , pp. 1930-1935
    • Foresee, F.D.1    Hagan, M.2
  • 12
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K-L, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of the rainfall-runoff process. Water Resour Res 31(10):2517-2530
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 13
    • 0037340658 scopus 로고    scopus 로고
    • Comparative analysis of event based rainfall-runoff modeling techniques - Deterministic, statistical and artificial neural networks
    • Jain A, Indurthy PKV (2003) Comparative analysis of event based rainfall-runoff modeling techniques - deterministic, statistical and artificial neural networks. J Hydrol Eng 8(2):93-98
    • (2003) J Hydrol Eng , vol.8 , Issue.2 , pp. 93-98
    • Jain, A.1    Indurthy, P.K.V.2
  • 14
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • Keskin ME, Terzi Ö (2006) Artificial neural network models of daily pan evaporation. J Hydrol Eng 11(1):65-70
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, Ö.2
  • 15
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T-W, Valdes JB (2003) Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. J Hydrol Eng 8(6):319-328
    • (2003) J Hydrol Eng , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.-W.1    Valdes, J.B.2
  • 16
    • 0000769964 scopus 로고
    • Time of concentration of small agricultural watersheds
    • Kirpich ZP (1940) Time of concentration of small agricultural watersheds. Civ Eng 10(6):362
    • (1940) Civ Eng , vol.10 , Issue.6 , pp. 362
    • Kirpich, Z.P.1
  • 17
    • 0003265255 scopus 로고    scopus 로고
    • Advantage of unit hydrograph derivation by neural networks
    • In: Babovie V, Larsen CL (eds) Copenhagen, Denmark A.A. Balkema, Rotterdam, Netherlands
    • Lange N (1998) Advantage of unit hydrograph derivation by neural networks. In: Babovie V, Larsen CL (eds) Hydroinformatics, Proc. 3rd Int. Conf. on Hydroinformatics. Copenhagen, Denmark, 2:783-789, A.A. Balkema, Rotterdam, Netherlands
    • (1998) Hydroinformatics, Proc. 3rd Int. Conf. on Hydroinformatics , vol.2 , pp. 783-789
    • Lange, N.1
  • 18
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399-417
    • (1996) Hydrol Sci J , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 19
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani H, Hsu K-L, Gupta HV, Sorooshian S (2004) Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J Hydrol 295:246-262
    • (2004) J Hydrol , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.-L.2    Gupta, H.V.3    Sorooshian, S.4
  • 20
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • Nagy HM, Watanabe K, Hirano M (2002) Prediction of sediment load concentration in rivers using artificial neural network model. J Hydraul Eng 128(6):588-595
    • (2002) J Hydraul Eng , vol.128 , Issue.6 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 21
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. J Hydrol 10:282-290
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 23
    • 14844323119 scopus 로고    scopus 로고
    • On-line monitoring of temperature in power transformers using optimal linear combination of ANNs
    • Indianapolis, Indiana, USA, 19-22 September
    • Pradhan MK, Ramu TS (2004) On-line monitoring of temperature in power transformers using optimal linear combination of ANNs. IEEE Int Symp on Electrical Insulation, Indianapolis, Indiana, USA, 19-22 September 2004: 70-73
    • (2004) IEEE Int Symp on Electrical Insulation , vol.2004 , pp. 70-73
    • Pradhan, M.K.1    Ramu, T.S.2
  • 24
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper siwane river, India
    • Raghuwanshi NS, Singh R, Reddy LS (2006) Runoff and sediment yield modeling using artificial neural networks: Upper siwane river, India. J Hydrol Eng 11(1):71-79
    • (2006) J Hydrol Eng , vol.11 , Issue.1 , pp. 71-79
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 25
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modeling
    • Rajurkar MP, Kothyari UC, Chaube UC (2002) Artificial neural networks for daily rainfall-runoff modeling. Hydrol Sci J 47(6):865-877
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 865-877
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 26
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural networks
    • Rajurkar MP, Kothyari UC, Chaube UC (2004) Modeling of the daily rainfall-runoff relationship with artificial neural networks. J Hydrol 285:96-113
    • (2004) J Hydrol , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 27
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar S, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216:32-55
    • (1999) J Hydrol , vol.216 , pp. 32-55
    • Sajikumar, S.1    Thandaveswara, B.S.2
  • 29
    • 0029416249 scopus 로고
    • Neural network models of rainfall-runoff process
    • Smith J, Eli RN (1995) Neural network models of rainfall-runoff process. J Water Resour Plan Manage ASCE 121(6):499-507
    • (1995) J Water Resour Plan Manage ASCE , vol.121 , Issue.6 , pp. 499-507
    • Smith, J.1    Eli, R.N.2
  • 30
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural network for modeling rating curves
    • Sudheer KP, Jain SK (2003) Radial basis function neural network for modeling rating curves. J Hydrol Eng 8(3):161-164
    • (2003) J Hydrol Eng , vol.8 , Issue.3 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 31
    • 0036898378 scopus 로고    scopus 로고
    • Artificial neural networks for sheet sediment transport
    • Tayfur G (2002) Artificial neural networks for sheet sediment transport. Hydrol Sci J 47(6):879-892
    • (2002) Hydrol Sci J , vol.47 , Issue.6 , pp. 879-892
    • Tayfur, G.1
  • 32
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • Thirumalaiah K, Deo MC (2000) Hydrological forecasting using neural networks. J Hydrol Eng 5(2):180-189
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 33
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation-runoff modeling using artificial neural networks and conceptual models
    • Tokar AS, Markus M (2000) Precipitation-runoff modeling using artificial neural networks and conceptual models. J Hydrol Eng 5(2):156-161
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 35
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural networks
    • Zhang B, Govindaraju RS (2000) Prediction of watershed runoff using Bayesian concepts and modular neural networks. Water Resour Res 36(3):753-762
    • (2000) Water Resour Res , vol.36 , Issue.3 , pp. 753-762
    • Zhang, B.1    Govindaraju, R.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.