-
1
-
-
54249116230
-
Genetic regulatory mechanisms in the synthesis of proteins
-
Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318-356.
-
(1961)
J. Mol. Biol.
, vol.3
, pp. 318-356
-
-
Jacob, F.1
Monod, J.2
-
2
-
-
0014193191
-
Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model
-
Beckwith JR. 1967. Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 156:597-604.
-
(1967)
Science
, vol.156
, pp. 597-604
-
-
Beckwith, J.R.1
-
3
-
-
57649168862
-
The carbohydrate metabolism of certain pathological overgrowths
-
Crabtree HG. 1928. The carbohydrate metabolism of certain pathological overgrowths. Biochem. J. 22:1289-1298.
-
(1928)
Biochem. J.
, vol.22
, pp. 1289-1298
-
-
Crabtree, H.G.1
-
4
-
-
0018675260
-
An examination of the Crabtree effect in Saccharomyces cerevisiae: The role of respiratory adaptation
-
Barford JP, Hall RJ. 1978. An examination of the Crabtree effect in Saccharomyces cerevisiae: the role of respiratory adaptation. J. Gen. Microbiol. 114:267-275.
-
(1978)
J. Gen. Microbiol.
, vol.114
, pp. 267-275
-
-
Barford, J.P.1
Hall, R.J.2
-
5
-
-
0030015215
-
Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose
-
Yin Z, Smith RJ, Brown AJ. 1996. Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol. Microbiol. 20:751-764.
-
(1996)
Mol. Microbiol.
, vol.20
, pp. 751-764
-
-
Yin, Z.1
Smith, R.J.2
Brown, A.J.3
-
6
-
-
0038349351
-
Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs
-
Yin Z, et al. 2003. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol. Microbiol. 48:713-724.
-
(2003)
Mol. Microbiol.
, vol.48
, pp. 713-724
-
-
Yin, Z.1
-
7
-
-
0031810672
-
Yeast carbon catabolite repression
-
Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
-
(1998)
Microbiol. Mol. Biol. Rev.
, vol.62
, pp. 334-361
-
-
Gancedo, J.M.1
-
8
-
-
0033118209
-
Glucose repression in yeast
-
Carlson M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202-207.
-
(1999)
Curr. Opin. Microbiol.
, vol.2
, pp. 202-207
-
-
Carlson, M.1
-
9
-
-
0032941868
-
Feasting, fasting and fermenting. Glucose sensing in yeast and other cells
-
Johnston M. 1999. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15:29-33.
-
(1999)
Trends Genet.
, vol.15
, pp. 29-33
-
-
Johnston, M.1
-
10
-
-
0032835137
-
Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
-
Thevelein JM, de Winde JH. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904-918.
-
(1999)
Mol. Microbiol.
, vol.33
, pp. 904-918
-
-
Thevelein, J.M.1
de Winde, J.H.2
-
12
-
-
44849104320
-
The early steps of glucose signalling in yeast
-
Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol. Rev. 32:673-704.
-
(2008)
FEMS Microbiol. Rev.
, vol.32
, pp. 673-704
-
-
Gancedo, J.M.1
-
13
-
-
0027932666
-
Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response
-
Gounalaki N, Thireos G. 1994. Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J. 13:4036-4041.
-
(1994)
EMBO J.
, vol.13
, pp. 4036-4041
-
-
Gounalaki, N.1
Thireos, G.2
-
14
-
-
0032518996
-
Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity
-
Görner W, et al. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586-597.
-
(1998)
Genes Dev.
, vol.12
, pp. 586-597
-
-
Görner, W.1
-
15
-
-
0032722596
-
The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response
-
Stanhill A, Schick N, Engelberg D. 1999. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol. Cell. Biol. 19:7529-7538.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 7529-7538
-
-
Stanhill, A.1
Schick, N.2
Engelberg, D.3
-
16
-
-
0033828333
-
Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae
-
(Part 9)
-
Garreau H, et al. 2000. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146(Part 9):2113-2120.
-
(2000)
Microbiology
, vol.146
, pp. 2113-2120
-
-
Garreau, H.1
-
17
-
-
0032865543
-
Function and regulation of yeast hexose transporters
-
Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554-569.
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 554-569
-
-
Ozcan, S.1
Johnston, M.2
-
18
-
-
1242300132
-
Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
-
Kaniak A, Xue Z, Macool D, Kim JH, Johnston M. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221-231.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 221-231
-
-
Kaniak, A.1
Xue, Z.2
Macool, D.3
Kim, J.H.4
Johnston, M.5
-
19
-
-
73149091660
-
Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
-
Usaite R, et al. 2009. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5:319.
-
(2009)
Mol. Syst. Biol.
, vol.5
, pp. 319
-
-
Usaite, R.1
-
20
-
-
0028108219
-
The levels of yeast gluconeogenic mRNAs respond to environmental factors
-
Mercado JJ, Smith R, Sagliocco FA, Brown AJ, Gancedo JM. 1994. The levels of yeast gluconeogenic mRNAs respond to environmental factors. Eur. J. Biochem. 224:473-481.
-
(1994)
Eur. J. Biochem.
, vol.224
, pp. 473-481
-
-
Mercado, J.J.1
Smith, R.2
Sagliocco, F.A.3
Brown, A.J.4
Gancedo, J.M.5
-
21
-
-
0032213751
-
Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
-
Scheffler IE, de la Cruz BJ, Prieto S. 1998. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int. J. Biochem. Cell Biol. 30:1175-1193.
-
(1998)
Int. J. Biochem. Cell Biol.
, vol.30
, pp. 1175-1193
-
-
Scheffler, I.E.1
de la Cruz, B.J.2
Prieto, S.3
-
22
-
-
0034100041
-
Glucose depletion rapidly inhibits translation initiation in yeast
-
Ashe MP, De Long SK, Sachs AB. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833-848.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 833-848
-
-
Ashe, M.P.1
de Long, S.K.2
Sachs, A.B.3
-
23
-
-
0020776397
-
Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae
-
Entian KD, Dröll L, Mecke D. 1983. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch. Microbiol. 134:187-192.
-
(1983)
Arch. Microbiol.
, vol.134
, pp. 187-192
-
-
Entian, K.D.1
Dröll, L.2
Mecke, D.3
-
24
-
-
0023191631
-
Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae
-
López-Boado YS, Herrero P, Gascón S, Moreno F. 1987. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae. Arch. Microbiol. 147:231-234.
-
(1987)
Arch. Microbiol.
, vol.147
, pp. 231-234
-
-
López-Boado, Y.S.1
Herrero, P.2
Gascón, S.3
Moreno, F.4
-
25
-
-
0032566737
-
Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae
-
Hämmerle M, et al. 1998. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273:25000-25005.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 25000-25005
-
-
Hämmerle, M.1
-
26
-
-
0033794796
-
Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae
-
Jiang H, Tatchell K, Liu S, Michels CA. 2000. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:411-422.
-
(2000)
Mol. Gen. Genet.
, vol.263
, pp. 411-422
-
-
Jiang, H.1
Tatchell, K.2
Liu, S.3
Michels, C.A.4
-
27
-
-
0037040938
-
Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
-
Horak J, Regelmann J, Wolf DH. 2002. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J. Biol. Chem. 277:8248-8254.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 8248-8254
-
-
Horak, J.1
Regelmann, J.2
Wolf, D.H.3
-
28
-
-
0038709277
-
Catabolite degradation of fructose-1,6- bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
-
Regelmann J, et al. 2003. Catabolite degradation of fructose-1,6- bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell 14:1652-1663.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1652-1663
-
-
Regelmann, J.1
-
29
-
-
0025739661
-
Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1
-
Mercado JJ, Vincent O, Gancedo JM. 1991. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. FEBS Lett. 291:97-100.
-
(1991)
FEBS Lett.
, vol.291
, pp. 97-100
-
-
Mercado, J.J.1
Vincent, O.2
Gancedo, J.M.3
-
30
-
-
0026730420
-
Regulatory regions in the yeast FBP1 and PCK1 genes
-
Mercado JJ, Gancedo JM. 1992. Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett. 311:110-114.
-
(1992)
FEBS Lett.
, vol.311
, pp. 110-114
-
-
Mercado, J.J.1
Gancedo, J.M.2
-
31
-
-
0002594666
-
Gluconeogenesis and catabolite inactivation
-
In Zimmermann FK, Entian KD (ed), Technomic Publishing, Basel, Switzerland
-
Gancedo JM, Gancedo C. 1997. Gluconeogenesis and catabolite inactivation, p 359-377. In Zimmermann FK, Entian KD (ed), Yeast sugar metabolism. Technomic Publishing, Basel, Switzerland.
-
(1997)
Yeast Sugar Metabolism
, pp. 359-377
-
-
Gancedo, J.M.1
Gancedo, C.2
-
32
-
-
0343570543
-
Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase in yeast
-
Schüle T, Rose M, Entian KD, Thumm M, Wolf DH. 2000. Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase in yeast. EMBO J. 19:2161-2167.
-
(2000)
EMBO J.
, vol.19
, pp. 2161-2167
-
-
Schüle, T.1
Rose, M.2
Entian, K.D.3
Thumm, M.4
Wolf, D.H.5
-
33
-
-
69949129045
-
Glucose sensing network in Candida albicans: A sweet spot for fungal morphogenesis
-
Sabina J, Brown V. 2009. Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot. Cell 8:1314-1320.
-
(2009)
Eukaryot. Cell
, vol.8
, pp. 1314-1320
-
-
Sabina, J.1
Brown, V.2
-
34
-
-
33846849322
-
Fermentative lifestyle in yeasts belonging to the Saccharomyces complex
-
Merico A, Sulo P, Piskur J, Compagno C. 2007. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 274:976-989.
-
(2007)
FEBS J.
, vol.274
, pp. 976-989
-
-
Merico, A.1
Sulo, P.2
Piskur, J.3
Compagno, C.4
-
35
-
-
0004246866
-
-
Bailliere Tindall, London, United Kingdom
-
Odds FC. 1988. Candida and candidosis. Bailliere Tindall, London, United Kingdom.
-
(1988)
Candida and Candidosis
-
-
Odds, F.C.1
-
38
-
-
80052562480
-
Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine
-
Ueno K, et al. 2011. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS One 6:e24759.
-
(2011)
PLoS One
, vol.6
-
-
Ueno, K.1
-
39
-
-
0035811478
-
The glyoxylate cycle is required for fungal virulence
-
Lorenz MC, Fink GR. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:83-86.
-
(2001)
Nature
, vol.412
, pp. 83-86
-
-
Lorenz, M.C.1
Fink, G.R.2
-
40
-
-
33646343945
-
Niche-specific regulation of central metabolic pathways in a fungal pathogen
-
Barelle CJ, et al. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8:961-971.
-
(2006)
Cell. Microbiol.
, vol.8
, pp. 961-971
-
-
Barelle, C.J.1
-
41
-
-
33751177789
-
Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans
-
Piekarska K, et al. 2006. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Eukaryot. Cell 5:1847-1856.
-
(2006)
Eukaryot. Cell.
, vol.5
, pp. 1847-1856
-
-
Piekarska, K.1
-
42
-
-
33847194205
-
Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes
-
Ramírez MA, Lorenz MC. 2007. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 6:280-290.
-
(2007)
Eukaryot. Cell
, vol.6
, pp. 280-290
-
-
Ramírez, M.A.1
Lorenz, M.C.2
-
43
-
-
23244467882
-
Rewiring of the yeast transcriptional network through the evolution of motif usage
-
Ihmels J, et al. 2005. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938-940.
-
(2005)
Science
, vol.309
, pp. 938-940
-
-
Ihmels, J.1
-
44
-
-
34250204870
-
Transcriptional rewiring of fungal galactose-metabolism circuitry
-
Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M. 2007. Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr. Biol. 17:1007-1013.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1007-1013
-
-
Martchenko, M.1
Levitin, A.2
Hogues, H.3
Nantel, A.4
Whiteway, M.5
-
45
-
-
71549145607
-
Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi
-
Lavoie H, Hogues H, Whiteway M. 2009. Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr. Opin. Microbiol. 12:655-663.
-
(2009)
Curr. Opin. Microbiol.
, vol.12
, pp. 655-663
-
-
Lavoie, H.1
Hogues, H.2
Whiteway, M.3
-
46
-
-
6344285788
-
Transcriptional response of Candida albicans upon internalization by macrophages
-
Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:1076-1087.
-
(2004)
Eukaryot. Cell
, vol.3
, pp. 1076-1087
-
-
Lorenz, M.C.1
Bender, J.A.2
Fink, G.R.3
-
47
-
-
73949083506
-
Glucose promotes stress resistance in the fungal pathogen Candida albicans
-
Rodaki A, et al. 2009. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol. Biol. Cell 20:4845-4855.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 4845-4855
-
-
Rodaki, A.1
-
48
-
-
0023821226
-
Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect
-
Niimi M, Kamiyama A, Tokunaga M. 1988. Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J. Med. Vet. Mycol. 26:195-198.
-
(1988)
J. Med. Vet. Mycol.
, vol.26
, pp. 195-198
-
-
Niimi, M.1
Kamiyama, A.2
Tokunaga, M.3
-
49
-
-
33646352049
-
Integration of metabolism with virulence in Candida albicans
-
In Brown AJ (ed.), Mycota XIII. Springer-Verlag, Heidelberg, Germany
-
Brown AJ. 2005. Integration of metabolism with virulence in Candida albicans, p 185-203. In Brown AJ (ed.), Fungal genomics. Mycota XIII. Springer-Verlag, Heidelberg, Germany.
-
(2005)
Fungal Genomics
, pp. 185-203
-
-
Brown, A.J.1
-
50
-
-
84865309913
-
Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen
-
Ene IV, et al. 2012. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell. Microbiol. 14: 1319-1335.
-
(2012)
Cell. Microbiol.
, vol.14
, pp. 1319-1335
-
-
Ene, I.V.1
-
51
-
-
0032694167
-
A sampling of the yeast proteome
-
Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. 1999. A sampling of the yeast proteome. Mol. Cell. Biol. 19:7357-7368.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 7357-7368
-
-
Futcher, B.1
Latter, G.I.2
Monardo, P.3
McLaughlin, C.S.4
Garrels, J.I.5
-
53
-
-
0035186283
-
Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae
-
de Nobel H, et al. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413-1428.
-
(2001)
Yeast
, vol.18
, pp. 1413-1428
-
-
de Nobel, H.1
-
54
-
-
3543118467
-
Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae
-
Yin Z, et al. 2004. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425-2436.
-
(2004)
Proteomics
, vol.4
, pp. 2425-2436
-
-
Yin, Z.1
-
55
-
-
79952455939
-
Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans
-
Leach MD, Stead DA, Argo E, MacCallum DM, Brown AJ. 2011. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol. Microbiol. 79:1574-1593.
-
(2011)
Mol. Microbiol.
, vol.79
, pp. 1574-1593
-
-
Leach, M.D.1
Stead, D.A.2
Argo, E.3
Maccallum, D.M.4
Brown, A.J.5
-
56
-
-
77449103113
-
Identification, analysis, and prediction of protein ubiquitination sites
-
Radivojac P, et al. 2010. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78:365-380.
-
(2010)
Proteins
, vol.78
, pp. 365-380
-
-
Radivojac, P.1
-
57
-
-
17144368786
-
Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood
-
Fradin C, et al. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56:397-415.
-
(2005)
Mol. Microbiol.
, vol.56
, pp. 397-415
-
-
Fradin, C.1
-
58
-
-
39849102492
-
A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases
-
Kusch H, et al. 2008. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int. J. Med. Microbiol. 298:291-318.
-
(2008)
Int. J. Med. Microbiol.
, vol.298
, pp. 291-318
-
-
Kusch, H.1
-
59
-
-
0034108221
-
Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans
-
Leng P, Sudbery PE, Brown AJ. 2000. Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol. 35:1264-1275.
-
(2000)
Mol. Microbiol.
, vol.35
, pp. 1264-1275
-
-
Leng, P.1
Sudbery, P.E.2
Brown, A.J.3
-
60
-
-
0038668930
-
Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells
-
Roig P, Gozalbo D. 2003. Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells. Fungal Genet. Biol. 39:70-81.
-
(2003)
Fungal Genet. Biol.
, vol.39
, pp. 70-81
-
-
Roig, P.1
Gozalbo, D.2
-
61
-
-
19644382950
-
Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis
-
Atir-Lande A, Gildor T, Kornitzer D. 2005. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol. Biol. Cell 16: 2772-2785.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2772-2785
-
-
Atir-Lande, A.1
Gildor, T.2
Kornitzer, D.3
-
62
-
-
33748674416
-
The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans
-
Li WJ, et al. 2006. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans. Mol. Microbiol. 62:212-226.
-
(2006)
Mol. Microbiol.
, vol.62
, pp. 212-226
-
-
Li, W.J.1
-
63
-
-
66149088494
-
Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans
-
Trunk K, et al. 2009. Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans. Eukaryot. Cell 8:756-767.
-
(2009)
Eukaryot. Cell
, vol.8
, pp. 756-767
-
-
Trunk, K.1
-
64
-
-
84856628618
-
Posttranslational modifications of proteins in the pathobiology of medically relevant fungi
-
Leach MD, Brown AJ. 2012. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot. Cell 11:98-108.
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 98-108
-
-
Leach, M.D.1
Brown, A.J.2
-
65
-
-
0033668629
-
Molecular cloning and characterization of the Candida albicans UBI3 gene coding for a ubiquitinhybrid protein
-
Roig P, Martínez JP, Gil ML, Gozalbo D. 2000. Molecular cloning and characterization of the Candida albicans UBI3 gene coding for a ubiquitinhybrid protein. Yeast 16:1413-1419.
-
(2000)
Yeast
, vol.16
, pp. 1413-1419
-
-
Roig, P.1
Martínez, J.P.2
Gil, M.L.3
Gozalbo, D.4
-
66
-
-
0036798450
-
Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition
-
Nantel A, et al. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13:3452-3465.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 3452-3465
-
-
Nantel, A.1
-
67
-
-
0037847543
-
Stress-induced gene expression in Candida albicans: Absence of a general stress response
-
Enjalbert B, Nantel A, Whiteway M. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14:1460-1467.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1460-1467
-
-
Enjalbert, B.1
Nantel, A.2
Whiteway, M.3
-
68
-
-
0344827287
-
Evolution of a combinatorial transcriptional circuit: A case study in yeasts
-
Tsong AE, Miller MG, Raisner RM, Johnson AD. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389-399.
-
(2003)
Cell
, vol.115
, pp. 389-399
-
-
Tsong, A.E.1
Miller, M.G.2
Raisner, R.M.3
Johnson, A.D.4
-
69
-
-
68049136747
-
A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress activated MAPK in regulating the stress-induced proteome
-
Yin Z, et al. 2009. A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress activated MAPK in regulating the stress-induced proteome. Proteomics 9:4686-4703.
-
(2009)
Proteomics
, vol.9
, pp. 4686-4703
-
-
Yin, Z.1
-
70
-
-
33947264766
-
In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion
-
Thewes S, et al. 2007. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol. Microbiol. 63:1606-1628.
-
(2007)
Mol. Microbiol.
, vol.63
, pp. 1606-1628
-
-
Thewes, S.1
-
71
-
-
0025978949
-
Getting started with yeast
-
Sherman F. 1991. Getting started with yeast. Methods Enzymol. 194:3-21.
-
(1991)
Methods Enzymol.
, vol.194
, pp. 3-21
-
-
Sherman, F.1
-
72
-
-
4444271170
-
A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes
-
Janke C, et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947-962.
-
(2004)
Yeast
, vol.21
, pp. 947-962
-
-
Janke, C.1
-
73
-
-
0032775010
-
Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines
-
Knop M, et al. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963-972.
-
(1999)
Yeast
, vol.15
, pp. 963-972
-
-
Knop, M.1
-
74
-
-
58749100444
-
Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney
-
Walker LA, et al. 2009. Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet. Biol. 46:210-219.
-
(2009)
Fungal Genet. Biol.
, vol.46
, pp. 210-219
-
-
Walker, L.A.1
-
75
-
-
38449101120
-
Integration of biological networks and gene expression data using cytoscape
-
Cline MS, et al. 2007. Integration of biological networks and gene expression data using cytoscape. Nat. Protoc. 2:2366-2382.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 2366-2382
-
-
Cline, M.S.1
-
76
-
-
4344587177
-
A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans
-
Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 15:4179-4190.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4179-4190
-
-
Smith, D.A.1
Nicholls, S.2
Morgan, B.A.3
Brown, A.J.4
Quinn, J.5
-
77
-
-
31944434598
-
Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
-
Enjalbert B, et al. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17:1018-1032.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 1018-1032
-
-
Enjalbert, B.1
-
78
-
-
34248327805
-
Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans
-
Enjalbert B, MacCallum DM, Odds FC, Brown AJ. 2007. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 75:2143-2151.
-
(2007)
Infect. Immun.
, vol.75
, pp. 2143-2151
-
-
Enjalbert, B.1
Maccallum, D.M.2
Odds, F.C.3
Brown, A.J.4
-
79
-
-
33746892279
-
Functional annotation: Extracting functional and regulatory order from microarrays
-
Imbeaud S, Auffray C. 2005. Functional annotation: extracting functional and regulatory order from microarrays. Mol. Syst. Biol. 1:.0009.
-
(2005)
Mol. Syst. Biol.
, vol.1
, pp. 0009
-
-
Imbeaud, S.1
Auffray, C.2
|