메뉴 건너뛰기




Volumn 3, Issue 6, 2012, Pages

Erratum to: The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans(mBio, (2012), 3, 6, 10.1128/mBio.00495-12);The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida Albicans

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID; CANDIDA ALBICANS ISOCITRATE LYASE 1; GLUCOSE; GLUTAREDOXIN; GLUTAREDOXIN 1; GLUTATHIONE PEROXIDASE 1; HEAT SHOCK PROTEIN; HEAT SHOCK PROTEIN 70; HEAT SHOCK PROTEIN KAR2; HEAT SHOCK PROTEIN SSA1; ISOCITRATE LYASE; ISOCITRATE LYASE 1; LACTIC ACID; MESSENGER RNA; OLEIC ACID; PHOSPHOENOLPYRUVATE CARBOXYKINASE 1; PHOSPHOENOLPYRUVATE CARBOXYLASE; PROTEOME; SACCHAROMYCES CEREVISIAE ISOCITRATE LYASE 1; THIOREDOXIN 1; TRANSCRIPTOME; UNCLASSIFIED DRUG;

EID: 84872128127     PISSN: 21612129     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.02489-14     Document Type: Erratum
Times cited : (96)

References (79)
  • 1
    • 54249116230 scopus 로고
    • Genetic regulatory mechanisms in the synthesis of proteins
    • Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318-356.
    • (1961) J. Mol. Biol. , vol.3 , pp. 318-356
    • Jacob, F.1    Monod, J.2
  • 2
    • 0014193191 scopus 로고
    • Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model
    • Beckwith JR. 1967. Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 156:597-604.
    • (1967) Science , vol.156 , pp. 597-604
    • Beckwith, J.R.1
  • 3
    • 57649168862 scopus 로고
    • The carbohydrate metabolism of certain pathological overgrowths
    • Crabtree HG. 1928. The carbohydrate metabolism of certain pathological overgrowths. Biochem. J. 22:1289-1298.
    • (1928) Biochem. J. , vol.22 , pp. 1289-1298
    • Crabtree, H.G.1
  • 4
    • 0018675260 scopus 로고
    • An examination of the Crabtree effect in Saccharomyces cerevisiae: The role of respiratory adaptation
    • Barford JP, Hall RJ. 1978. An examination of the Crabtree effect in Saccharomyces cerevisiae: the role of respiratory adaptation. J. Gen. Microbiol. 114:267-275.
    • (1978) J. Gen. Microbiol. , vol.114 , pp. 267-275
    • Barford, J.P.1    Hall, R.J.2
  • 5
    • 0030015215 scopus 로고    scopus 로고
    • Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose
    • Yin Z, Smith RJ, Brown AJ. 1996. Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol. Microbiol. 20:751-764.
    • (1996) Mol. Microbiol. , vol.20 , pp. 751-764
    • Yin, Z.1    Smith, R.J.2    Brown, A.J.3
  • 6
    • 0038349351 scopus 로고    scopus 로고
    • Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs
    • Yin Z, et al. 2003. Glucose triggers different global responses in yeast, depending on the strength of the signal, and transiently stabilizes ribosomal protein mRNAs. Mol. Microbiol. 48:713-724.
    • (2003) Mol. Microbiol. , vol.48 , pp. 713-724
    • Yin, Z.1
  • 7
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo JM. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 8
    • 0033118209 scopus 로고    scopus 로고
    • Glucose repression in yeast
    • Carlson M. 1999. Glucose repression in yeast. Curr. Opin. Microbiol. 2:202-207.
    • (1999) Curr. Opin. Microbiol. , vol.2 , pp. 202-207
    • Carlson, M.1
  • 9
    • 0032941868 scopus 로고    scopus 로고
    • Feasting, fasting and fermenting. Glucose sensing in yeast and other cells
    • Johnston M. 1999. Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet. 15:29-33.
    • (1999) Trends Genet. , vol.15 , pp. 29-33
    • Johnston, M.1
  • 10
    • 0032835137 scopus 로고    scopus 로고
    • Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
    • Thevelein JM, de Winde JH. 1999. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904-918.
    • (1999) Mol. Microbiol. , vol.33 , pp. 904-918
    • Thevelein, J.M.1    de Winde, J.H.2
  • 12
    • 44849104320 scopus 로고    scopus 로고
    • The early steps of glucose signalling in yeast
    • Gancedo JM. 2008. The early steps of glucose signalling in yeast. FEMS Microbiol. Rev. 32:673-704.
    • (2008) FEMS Microbiol. Rev. , vol.32 , pp. 673-704
    • Gancedo, J.M.1
  • 13
    • 0027932666 scopus 로고
    • Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response
    • Gounalaki N, Thireos G. 1994. Yap1p, a yeast transcriptional activator that mediates multidrug resistance, regulates the metabolic stress response. EMBO J. 13:4036-4041.
    • (1994) EMBO J. , vol.13 , pp. 4036-4041
    • Gounalaki, N.1    Thireos, G.2
  • 14
    • 0032518996 scopus 로고    scopus 로고
    • Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity
    • Görner W, et al. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586-597.
    • (1998) Genes Dev. , vol.12 , pp. 586-597
    • Görner, W.1
  • 15
    • 0032722596 scopus 로고    scopus 로고
    • The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response
    • Stanhill A, Schick N, Engelberg D. 1999. The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol. Cell. Biol. 19:7529-7538.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 7529-7538
    • Stanhill, A.1    Schick, N.2    Engelberg, D.3
  • 16
    • 0033828333 scopus 로고    scopus 로고
    • Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae
    • (Part 9)
    • Garreau H, et al. 2000. Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and the diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146(Part 9):2113-2120.
    • (2000) Microbiology , vol.146 , pp. 2113-2120
    • Garreau, H.1
  • 17
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Ozcan S, Johnston M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63:554-569.
    • (1999) Microbiol. Mol. Biol. Rev. , vol.63 , pp. 554-569
    • Ozcan, S.1    Johnston, M.2
  • 18
    • 1242300132 scopus 로고    scopus 로고
    • Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
    • Kaniak A, Xue Z, Macool D, Kim JH, Johnston M. 2004. Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae. Eukaryot. Cell 3:221-231.
    • (2004) Eukaryot. Cell , vol.3 , pp. 221-231
    • Kaniak, A.1    Xue, Z.2    Macool, D.3    Kim, J.H.4    Johnston, M.5
  • 19
    • 73149091660 scopus 로고    scopus 로고
    • Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator
    • Usaite R, et al. 2009. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol. Syst. Biol. 5:319.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 319
    • Usaite, R.1
  • 21
    • 0032213751 scopus 로고    scopus 로고
    • Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
    • Scheffler IE, de la Cruz BJ, Prieto S. 1998. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int. J. Biochem. Cell Biol. 30:1175-1193.
    • (1998) Int. J. Biochem. Cell Biol. , vol.30 , pp. 1175-1193
    • Scheffler, I.E.1    de la Cruz, B.J.2    Prieto, S.3
  • 22
    • 0034100041 scopus 로고    scopus 로고
    • Glucose depletion rapidly inhibits translation initiation in yeast
    • Ashe MP, De Long SK, Sachs AB. 2000. Glucose depletion rapidly inhibits translation initiation in yeast. Mol. Biol. Cell 11:833-848.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 833-848
    • Ashe, M.P.1    de Long, S.K.2    Sachs, A.B.3
  • 23
    • 0020776397 scopus 로고
    • Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae
    • Entian KD, Dröll L, Mecke D. 1983. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch. Microbiol. 134:187-192.
    • (1983) Arch. Microbiol. , vol.134 , pp. 187-192
    • Entian, K.D.1    Dröll, L.2    Mecke, D.3
  • 24
    • 0023191631 scopus 로고
    • Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae
    • López-Boado YS, Herrero P, Gascón S, Moreno F. 1987. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae. Arch. Microbiol. 147:231-234.
    • (1987) Arch. Microbiol. , vol.147 , pp. 231-234
    • López-Boado, Y.S.1    Herrero, P.2    Gascón, S.3    Moreno, F.4
  • 25
    • 0032566737 scopus 로고    scopus 로고
    • Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae
    • Hämmerle M, et al. 1998. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273:25000-25005.
    • (1998) J. Biol. Chem. , vol.273 , pp. 25000-25005
    • Hämmerle, M.1
  • 26
    • 0033794796 scopus 로고    scopus 로고
    • Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae
    • Jiang H, Tatchell K, Liu S, Michels CA. 2000. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:411-422.
    • (2000) Mol. Gen. Genet. , vol.263 , pp. 411-422
    • Jiang, H.1    Tatchell, K.2    Liu, S.3    Michels, C.A.4
  • 27
    • 0037040938 scopus 로고    scopus 로고
    • Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway
    • Horak J, Regelmann J, Wolf DH. 2002. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J. Biol. Chem. 277:8248-8254.
    • (2002) J. Biol. Chem. , vol.277 , pp. 8248-8254
    • Horak, J.1    Regelmann, J.2    Wolf, D.H.3
  • 28
    • 0038709277 scopus 로고    scopus 로고
    • Catabolite degradation of fructose-1,6- bisphosphatase in the yeast Saccharomyces cerevisiae: A genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways
    • Regelmann J, et al. 2003. Catabolite degradation of fructose-1,6- bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell 14:1652-1663.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1652-1663
    • Regelmann, J.1
  • 29
    • 0025739661 scopus 로고
    • Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1
    • Mercado JJ, Vincent O, Gancedo JM. 1991. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. FEBS Lett. 291:97-100.
    • (1991) FEBS Lett. , vol.291 , pp. 97-100
    • Mercado, J.J.1    Vincent, O.2    Gancedo, J.M.3
  • 30
    • 0026730420 scopus 로고
    • Regulatory regions in the yeast FBP1 and PCK1 genes
    • Mercado JJ, Gancedo JM. 1992. Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett. 311:110-114.
    • (1992) FEBS Lett. , vol.311 , pp. 110-114
    • Mercado, J.J.1    Gancedo, J.M.2
  • 31
    • 0002594666 scopus 로고    scopus 로고
    • Gluconeogenesis and catabolite inactivation
    • In Zimmermann FK, Entian KD (ed), Technomic Publishing, Basel, Switzerland
    • Gancedo JM, Gancedo C. 1997. Gluconeogenesis and catabolite inactivation, p 359-377. In Zimmermann FK, Entian KD (ed), Yeast sugar metabolism. Technomic Publishing, Basel, Switzerland.
    • (1997) Yeast Sugar Metabolism , pp. 359-377
    • Gancedo, J.M.1    Gancedo, C.2
  • 32
    • 0343570543 scopus 로고    scopus 로고
    • Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase in yeast
    • Schüle T, Rose M, Entian KD, Thumm M, Wolf DH. 2000. Ubc8p functions in catabolite degradation of fructose-1,6-bisphosphatase in yeast. EMBO J. 19:2161-2167.
    • (2000) EMBO J. , vol.19 , pp. 2161-2167
    • Schüle, T.1    Rose, M.2    Entian, K.D.3    Thumm, M.4    Wolf, D.H.5
  • 33
    • 69949129045 scopus 로고    scopus 로고
    • Glucose sensing network in Candida albicans: A sweet spot for fungal morphogenesis
    • Sabina J, Brown V. 2009. Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot. Cell 8:1314-1320.
    • (2009) Eukaryot. Cell , vol.8 , pp. 1314-1320
    • Sabina, J.1    Brown, V.2
  • 34
    • 33846849322 scopus 로고    scopus 로고
    • Fermentative lifestyle in yeasts belonging to the Saccharomyces complex
    • Merico A, Sulo P, Piskur J, Compagno C. 2007. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 274:976-989.
    • (2007) FEBS J. , vol.274 , pp. 976-989
    • Merico, A.1    Sulo, P.2    Piskur, J.3    Compagno, C.4
  • 35
    • 0004246866 scopus 로고
    • Bailliere Tindall, London, United Kingdom
    • Odds FC. 1988. Candida and candidosis. Bailliere Tindall, London, United Kingdom.
    • (1988) Candida and Candidosis
    • Odds, F.C.1
  • 38
    • 80052562480 scopus 로고    scopus 로고
    • Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine
    • Ueno K, et al. 2011. Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS One 6:e24759.
    • (2011) PLoS One , vol.6
    • Ueno, K.1
  • 39
    • 0035811478 scopus 로고    scopus 로고
    • The glyoxylate cycle is required for fungal virulence
    • Lorenz MC, Fink GR. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:83-86.
    • (2001) Nature , vol.412 , pp. 83-86
    • Lorenz, M.C.1    Fink, G.R.2
  • 40
    • 33646343945 scopus 로고    scopus 로고
    • Niche-specific regulation of central metabolic pathways in a fungal pathogen
    • Barelle CJ, et al. 2006. Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell. Microbiol. 8:961-971.
    • (2006) Cell. Microbiol. , vol.8 , pp. 961-971
    • Barelle, C.J.1
  • 41
    • 33751177789 scopus 로고    scopus 로고
    • Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans
    • Piekarska K, et al. 2006. Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Eukaryot. Cell 5:1847-1856.
    • (2006) Eukaryot. Cell. , vol.5 , pp. 1847-1856
    • Piekarska, K.1
  • 42
    • 33847194205 scopus 로고    scopus 로고
    • Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes
    • Ramírez MA, Lorenz MC. 2007. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 6:280-290.
    • (2007) Eukaryot. Cell , vol.6 , pp. 280-290
    • Ramírez, M.A.1    Lorenz, M.C.2
  • 43
    • 23244467882 scopus 로고    scopus 로고
    • Rewiring of the yeast transcriptional network through the evolution of motif usage
    • Ihmels J, et al. 2005. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938-940.
    • (2005) Science , vol.309 , pp. 938-940
    • Ihmels, J.1
  • 44
  • 45
    • 71549145607 scopus 로고    scopus 로고
    • Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi
    • Lavoie H, Hogues H, Whiteway M. 2009. Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr. Opin. Microbiol. 12:655-663.
    • (2009) Curr. Opin. Microbiol. , vol.12 , pp. 655-663
    • Lavoie, H.1    Hogues, H.2    Whiteway, M.3
  • 46
    • 6344285788 scopus 로고    scopus 로고
    • Transcriptional response of Candida albicans upon internalization by macrophages
    • Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3:1076-1087.
    • (2004) Eukaryot. Cell , vol.3 , pp. 1076-1087
    • Lorenz, M.C.1    Bender, J.A.2    Fink, G.R.3
  • 47
    • 73949083506 scopus 로고    scopus 로고
    • Glucose promotes stress resistance in the fungal pathogen Candida albicans
    • Rodaki A, et al. 2009. Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol. Biol. Cell 20:4845-4855.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 4845-4855
    • Rodaki, A.1
  • 48
    • 0023821226 scopus 로고
    • Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect
    • Niimi M, Kamiyama A, Tokunaga M. 1988. Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J. Med. Vet. Mycol. 26:195-198.
    • (1988) J. Med. Vet. Mycol. , vol.26 , pp. 195-198
    • Niimi, M.1    Kamiyama, A.2    Tokunaga, M.3
  • 49
    • 33646352049 scopus 로고    scopus 로고
    • Integration of metabolism with virulence in Candida albicans
    • In Brown AJ (ed.), Mycota XIII. Springer-Verlag, Heidelberg, Germany
    • Brown AJ. 2005. Integration of metabolism with virulence in Candida albicans, p 185-203. In Brown AJ (ed.), Fungal genomics. Mycota XIII. Springer-Verlag, Heidelberg, Germany.
    • (2005) Fungal Genomics , pp. 185-203
    • Brown, A.J.1
  • 50
    • 84865309913 scopus 로고    scopus 로고
    • Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen
    • Ene IV, et al. 2012. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell. Microbiol. 14: 1319-1335.
    • (2012) Cell. Microbiol. , vol.14 , pp. 1319-1335
    • Ene, I.V.1
  • 53
    • 0035186283 scopus 로고    scopus 로고
    • Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae
    • de Nobel H, et al. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18:1413-1428.
    • (2001) Yeast , vol.18 , pp. 1413-1428
    • de Nobel, H.1
  • 54
    • 3543118467 scopus 로고    scopus 로고
    • Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae
    • Yin Z, et al. 2004. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425-2436.
    • (2004) Proteomics , vol.4 , pp. 2425-2436
    • Yin, Z.1
  • 55
    • 79952455939 scopus 로고    scopus 로고
    • Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans
    • Leach MD, Stead DA, Argo E, MacCallum DM, Brown AJ. 2011. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol. Microbiol. 79:1574-1593.
    • (2011) Mol. Microbiol. , vol.79 , pp. 1574-1593
    • Leach, M.D.1    Stead, D.A.2    Argo, E.3    Maccallum, D.M.4    Brown, A.J.5
  • 56
    • 77449103113 scopus 로고    scopus 로고
    • Identification, analysis, and prediction of protein ubiquitination sites
    • Radivojac P, et al. 2010. Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78:365-380.
    • (2010) Proteins , vol.78 , pp. 365-380
    • Radivojac, P.1
  • 57
    • 17144368786 scopus 로고    scopus 로고
    • Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood
    • Fradin C, et al. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microbiol. 56:397-415.
    • (2005) Mol. Microbiol. , vol.56 , pp. 397-415
    • Fradin, C.1
  • 58
    • 39849102492 scopus 로고    scopus 로고
    • A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases
    • Kusch H, et al. 2008. A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. Int. J. Med. Microbiol. 298:291-318.
    • (2008) Int. J. Med. Microbiol. , vol.298 , pp. 291-318
    • Kusch, H.1
  • 59
    • 0034108221 scopus 로고    scopus 로고
    • Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans
    • Leng P, Sudbery PE, Brown AJ. 2000. Rad6p represses yeast-hypha morphogenesis in the human fungal pathogen Candida albicans. Mol. Microbiol. 35:1264-1275.
    • (2000) Mol. Microbiol. , vol.35 , pp. 1264-1275
    • Leng, P.1    Sudbery, P.E.2    Brown, A.J.3
  • 60
    • 0038668930 scopus 로고    scopus 로고
    • Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells
    • Roig P, Gozalbo D. 2003. Depletion of polyubiquitin encoded by the UBI4 gene confers pleiotropic phenotype to Candida albicans cells. Fungal Genet. Biol. 39:70-81.
    • (2003) Fungal Genet. Biol. , vol.39 , pp. 70-81
    • Roig, P.1    Gozalbo, D.2
  • 61
    • 19644382950 scopus 로고    scopus 로고
    • Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis
    • Atir-Lande A, Gildor T, Kornitzer D. 2005. Role for the SCFCDC4 ubiquitin ligase in Candida albicans morphogenesis. Mol. Biol. Cell 16: 2772-2785.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2772-2785
    • Atir-Lande, A.1    Gildor, T.2    Kornitzer, D.3
  • 62
    • 33748674416 scopus 로고    scopus 로고
    • The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans
    • Li WJ, et al. 2006. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans. Mol. Microbiol. 62:212-226.
    • (2006) Mol. Microbiol. , vol.62 , pp. 212-226
    • Li, W.J.1
  • 63
    • 66149088494 scopus 로고    scopus 로고
    • Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans
    • Trunk K, et al. 2009. Depletion of the cullin Cdc53p induces morphogenetic changes in Candida albicans. Eukaryot. Cell 8:756-767.
    • (2009) Eukaryot. Cell , vol.8 , pp. 756-767
    • Trunk, K.1
  • 64
    • 84856628618 scopus 로고    scopus 로고
    • Posttranslational modifications of proteins in the pathobiology of medically relevant fungi
    • Leach MD, Brown AJ. 2012. Posttranslational modifications of proteins in the pathobiology of medically relevant fungi. Eukaryot. Cell 11:98-108.
    • (2012) Eukaryot. Cell , vol.11 , pp. 98-108
    • Leach, M.D.1    Brown, A.J.2
  • 65
    • 0033668629 scopus 로고    scopus 로고
    • Molecular cloning and characterization of the Candida albicans UBI3 gene coding for a ubiquitinhybrid protein
    • Roig P, Martínez JP, Gil ML, Gozalbo D. 2000. Molecular cloning and characterization of the Candida albicans UBI3 gene coding for a ubiquitinhybrid protein. Yeast 16:1413-1419.
    • (2000) Yeast , vol.16 , pp. 1413-1419
    • Roig, P.1    Martínez, J.P.2    Gil, M.L.3    Gozalbo, D.4
  • 66
    • 0036798450 scopus 로고    scopus 로고
    • Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition
    • Nantel A, et al. 2002. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 13:3452-3465.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 3452-3465
    • Nantel, A.1
  • 67
    • 0037847543 scopus 로고    scopus 로고
    • Stress-induced gene expression in Candida albicans: Absence of a general stress response
    • Enjalbert B, Nantel A, Whiteway M. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14:1460-1467.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1460-1467
    • Enjalbert, B.1    Nantel, A.2    Whiteway, M.3
  • 68
    • 0344827287 scopus 로고    scopus 로고
    • Evolution of a combinatorial transcriptional circuit: A case study in yeasts
    • Tsong AE, Miller MG, Raisner RM, Johnson AD. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115: 389-399.
    • (2003) Cell , vol.115 , pp. 389-399
    • Tsong, A.E.1    Miller, M.G.2    Raisner, R.M.3    Johnson, A.D.4
  • 69
    • 68049136747 scopus 로고    scopus 로고
    • A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress activated MAPK in regulating the stress-induced proteome
    • Yin Z, et al. 2009. A proteomic analysis of the salt, cadmium and peroxide stress responses in Candida albicans and the role of the Hog1 stress activated MAPK in regulating the stress-induced proteome. Proteomics 9:4686-4703.
    • (2009) Proteomics , vol.9 , pp. 4686-4703
    • Yin, Z.1
  • 70
    • 33947264766 scopus 로고    scopus 로고
    • In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion
    • Thewes S, et al. 2007. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol. Microbiol. 63:1606-1628.
    • (2007) Mol. Microbiol. , vol.63 , pp. 1606-1628
    • Thewes, S.1
  • 71
    • 0025978949 scopus 로고
    • Getting started with yeast
    • Sherman F. 1991. Getting started with yeast. Methods Enzymol. 194:3-21.
    • (1991) Methods Enzymol. , vol.194 , pp. 3-21
    • Sherman, F.1
  • 72
    • 4444271170 scopus 로고    scopus 로고
    • A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes
    • Janke C, et al. 2004. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947-962.
    • (2004) Yeast , vol.21 , pp. 947-962
    • Janke, C.1
  • 73
    • 0032775010 scopus 로고    scopus 로고
    • Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines
    • Knop M, et al. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963-972.
    • (1999) Yeast , vol.15 , pp. 963-972
    • Knop, M.1
  • 74
    • 58749100444 scopus 로고    scopus 로고
    • Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney
    • Walker LA, et al. 2009. Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet. Biol. 46:210-219.
    • (2009) Fungal Genet. Biol. , vol.46 , pp. 210-219
    • Walker, L.A.1
  • 75
    • 38449101120 scopus 로고    scopus 로고
    • Integration of biological networks and gene expression data using cytoscape
    • Cline MS, et al. 2007. Integration of biological networks and gene expression data using cytoscape. Nat. Protoc. 2:2366-2382.
    • (2007) Nat. Protoc. , vol.2 , pp. 2366-2382
    • Cline, M.S.1
  • 76
    • 4344587177 scopus 로고    scopus 로고
    • A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans
    • Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol. Biol. Cell 15:4179-4190.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 4179-4190
    • Smith, D.A.1    Nicholls, S.2    Morgan, B.A.3    Brown, A.J.4    Quinn, J.5
  • 77
    • 31944434598 scopus 로고    scopus 로고
    • Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
    • Enjalbert B, et al. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17:1018-1032.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1018-1032
    • Enjalbert, B.1
  • 78
    • 34248327805 scopus 로고    scopus 로고
    • Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans
    • Enjalbert B, MacCallum DM, Odds FC, Brown AJ. 2007. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect. Immun. 75:2143-2151.
    • (2007) Infect. Immun. , vol.75 , pp. 2143-2151
    • Enjalbert, B.1    Maccallum, D.M.2    Odds, F.C.3    Brown, A.J.4
  • 79
    • 33746892279 scopus 로고    scopus 로고
    • Functional annotation: Extracting functional and regulatory order from microarrays
    • Imbeaud S, Auffray C. 2005. Functional annotation: extracting functional and regulatory order from microarrays. Mol. Syst. Biol. 1:.0009.
    • (2005) Mol. Syst. Biol. , vol.1 , pp. 0009
    • Imbeaud, S.1    Auffray, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.