메뉴 건너뛰기




Volumn 8, Issue 12, 2012, Pages

A Comparison of Computational Models for Eukaryotic Cell Shape and Motility

Author keywords

[No Author keywords available]

Indexed keywords

CELL SIGNALING; CELLS; COMPUTATION THEORY; COMPUTATIONAL METHODS; CYTOLOGY; FLOW OF FLUIDS; VISCOELASTICITY;

EID: 84872032983     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1002793     Document Type: Article
Times cited : (99)

References (82)
  • 1
    • 0027404903 scopus 로고
    • Principles of locomotion for simple-shaped cells
    • Lee J, Ishihara A, Theriot J, Jacobson K, (1993) Principles of locomotion for simple-shaped cells. Nature 362: 167-171.
    • (1993) Nature , vol.362 , pp. 167-171
    • Lee, J.1    Ishihara, A.2    Theriot, J.3    Jacobson, K.4
  • 2
    • 79955562832 scopus 로고    scopus 로고
    • A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues
    • doi:10.1371/journal.pcbi.1001121
    • Jilkine A, Edelstein-Keshet L, (2011) A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput Biol 7: e1001121 doi:10.1371/journal.pcbi.1001121.
    • (2011) PLoS Comput Biol , vol.7
    • Jilkine, A.1    Edelstein-Keshet, L.2
  • 3
    • 42049115235 scopus 로고    scopus 로고
    • Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity
    • Goryachev A, Pokhilko A, (2008) Dynamics of Cdc42 network embodies a Turing-type mechanism of yeast cell polarity. FEBS Letters 582: 1437-1443.
    • (2008) FEBS Letters , vol.582 , pp. 1437-1443
    • Goryachev, A.1    Pokhilko, A.2
  • 4
    • 84861165097 scopus 로고    scopus 로고
    • Mechanistic mathematical model of polarity in yeast
    • Savage N, Layton A, Lew D, (2012) Mechanistic mathematical model of polarity in yeast. Mol Biol Cell 23: 1998-2013.
    • (2012) Mol Biol Cell , vol.23 , pp. 1998-2013
    • Savage, N.1    Layton, A.2    Lew, D.3
  • 5
    • 0347081540 scopus 로고    scopus 로고
    • Locomotion of a two dimensional keratocyte model
    • Sambeth R, Baumgaertner A, (2001) Locomotion of a two dimensional keratocyte model. J Biol Sys 9: 201-220.
    • (2001) J Biol Sys , vol.9 , pp. 201-220
    • Sambeth, R.1    Baumgaertner, A.2
  • 6
    • 0242390532 scopus 로고    scopus 로고
    • Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia
    • Grimm H, Verkhovsky A, Mogilner A, Meister J, (2003) Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur Biophys J 32: 563-577.
    • (2003) Eur Biophys J , vol.32 , pp. 563-577
    • Grimm, H.1    Verkhovsky, A.2    Mogilner, A.3    Meister, J.4
  • 7
    • 21844458415 scopus 로고    scopus 로고
    • Multiscale two-dimensional modeling of a motile simple-shaped cell
    • Rubinstein B, Jacobson K, Mogilner A, (2005) Multiscale two-dimensional modeling of a motile simple-shaped cell. Multiscale Model Sim 3: 413-439.
    • (2005) Multiscale Model Sim , vol.3 , pp. 413-439
    • Rubinstein, B.1    Jacobson, K.2    Mogilner, A.3
  • 10
    • 77951628111 scopus 로고    scopus 로고
    • Form and function in cell motility: from fibroblasts to keratocytes
    • Herant M, Dembo M, (2010) Form and function in cell motility: from fibroblasts to keratocytes. Biophys J 98: 1408-1417.
    • (2010) Biophys J , vol.98 , pp. 1408-1417
    • Herant, M.1    Dembo, M.2
  • 11
    • 84860827144 scopus 로고    scopus 로고
    • Coupling actin flow, adhesion, and morphology in a computational cell motility model
    • Shao D, Levine H, Rappel W, (2012) Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci 109: 6851-6856.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 6851-6856
    • Shao, D.1    Levine, H.2    Rappel, W.3
  • 12
    • 84861146594 scopus 로고    scopus 로고
    • How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility
    • doi:10.1371/journal.pcbi.1002402
    • Marée A, Grieneisen V, Edelstein-Keshet L, (2012) How cells integrate complex stimuli: the effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput Biol 8: e1002402 doi:10.1371/journal.pcbi.1002402.
    • (2012) PLoS Comput Biol , vol.8
    • Marée, A.1    Grieneisen, V.2    Edelstein-Keshet, L.3
  • 13
    • 84872019930 scopus 로고    scopus 로고
    • Redundant mechanisms for stable cell locomotion revealed by minimal models
    • Wolgemuth C, Stajic J, Mogilner A, (2010) Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys J 98: 160.
    • (2010) Biophys J , vol.98 , pp. 160
    • Wolgemuth, C.1    Stajic, J.2    Mogilner, A.3
  • 14
    • 0036708436 scopus 로고    scopus 로고
    • Regulation of actin dynamics in rapidly moving cells: a quantitative analysis
    • Mogilner A, Edelstein-Keshet L, (2002) Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83: 1237-1258.
    • (2002) Biophys J , vol.83 , pp. 1237-1258
    • Mogilner, A.1    Edelstein-Keshet, L.2
  • 15
    • 0032823984 scopus 로고    scopus 로고
    • Orientation of chemotactic cells and growth cones: models and mechanisms
    • Meinhardt H, (1999) Orientation of chemotactic cells and growth cones: models and mechanisms. J Cell Sci 112: 2867-2874.
    • (1999) J Cell Sci , vol.112 , pp. 2867-2874
    • Meinhardt, H.1
  • 16
    • 79958064500 scopus 로고    scopus 로고
    • Modelling cell movement and chemotaxis pseudopod based feedback
    • Neilson M, Mackenzie J, Webb S, Insall R, (2011) Modelling cell movement and chemotaxis pseudopod based feedback. SIAM J Sci Comput 33: 1035-1057.
    • (2011) SIAM J Sci Comput , vol.33 , pp. 1035-1057
    • Neilson, M.1    Mackenzie, J.2    Webb, S.3    Insall, R.4
  • 17
    • 79958046951 scopus 로고    scopus 로고
    • Chemotaxis: a feedback based computational model robustly predicts multiple aspects of real cell behaviour
    • doi:10.1371/journal.pbio.1000618
    • Neilson M, Veltman D, van Haastert P, Webb S, Mackenzie J, et al. (2011) Chemotaxis: a feedback based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 9: e1000618 doi:10.1371/journal.pbio.1000618.
    • (2011) PLoS Biol , vol.9
    • Neilson, M.1    Veltman, D.2    van Haastert, P.3    Webb, S.4    Mackenzie, J.5
  • 18
    • 79959836579 scopus 로고    scopus 로고
    • Activated membrane patches guide chemotactic cell motility
    • doi:10.1371/journal.pcbi.1002044
    • Hecht I, Skoge M, Charest P, Ben-Jacob E, Firtel R, et al. (2011) Activated membrane patches guide chemotactic cell motility. PLoS Comput Biol 7: e1002044 doi:10.1371/journal.pcbi.1002044.
    • (2011) PLoS Comput Biol , vol.7
    • Hecht, I.1    Skoge, M.2    Charest, P.3    Ben-Jacob, E.4    Firtel, R.5
  • 19
    • 79961133764 scopus 로고    scopus 로고
    • "Self-assisted" amoeboid navigation in complex environments
    • doi:10.1371/journal.pone.0021955
    • Hecht I, Levine H, Rappel W, Ben-Jacob E, (2011) "Self-assisted" amoeboid navigation in complex environments. PLoS ONE 6: e21955 doi:10.1371/journal.pone.0021955.
    • (2011) PLoS ONE , vol.6
    • Hecht, I.1    Levine, H.2    Rappel, W.3    Ben-Jacob, E.4
  • 20
    • 77952955309 scopus 로고    scopus 로고
    • Understanding eukaryotic chemotaxis: a pseudopod-centred view
    • Insall R, (2010) Understanding eukaryotic chemotaxis: a pseudopod-centred view. Nat Rev Mol Cell Biol 11: 453-458.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 453-458
    • Insall, R.1
  • 21
    • 0036219106 scopus 로고    scopus 로고
    • Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils
    • Levchenko A, Iglesias P, (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82: 50-63.
    • (2002) Biophys J , vol.82 , pp. 50-63
    • Levchenko, A.1    Iglesias, P.2
  • 22
    • 10044250005 scopus 로고    scopus 로고
    • Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI (3, 4, 5) P3 response in Dictyostelium cells
    • Ma L, Janetopoulos C, Yang L, Devreotes P, Iglesias P, (2004) Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI (3, 4, 5) P3 response in Dictyostelium cells. Biophys J 87: 3764-3774.
    • (2004) Biophys J , vol.87 , pp. 3764-3774
    • Ma, L.1    Janetopoulos, C.2    Yang, L.3    Devreotes, P.4    Iglesias, P.5
  • 23
    • 2942687012 scopus 로고    scopus 로고
    • Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton
    • Janetopoulos C, Ma L, Devreotes P, Iglesias P, (2004) Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proc Natl Acad Sci U S A 101: 8951-8956.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 8951-8956
    • Janetopoulos, C.1    Ma, L.2    Devreotes, P.3    Iglesias, P.4
  • 24
    • 78049265815 scopus 로고    scopus 로고
    • Cells navigate with a local-excitation, global-inhibition-biased excitable network
    • Xiong Y, Huang C, Iglesias P, Devreotes P, (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci 107: 17079-17086.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 17079-17086
    • Xiong, Y.1    Huang, C.2    Iglesias, P.3    Devreotes, P.4
  • 25
    • 0042354714 scopus 로고    scopus 로고
    • Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils
    • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, et al. (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114: 201-214.
    • (2003) Cell , vol.114 , pp. 201-214
    • Xu, J.1    Wang, F.2    van Keymeulen, A.3    Herzmark, P.4    Straight, A.5
  • 26
    • 33644865751 scopus 로고    scopus 로고
    • Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism
    • Wong K, Pertz O, Hahn K, Bourne H, (2006) Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc Natl Acad Sci 103: 3639-3644.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 3639-3644
    • Wong, K.1    Pertz, O.2    Hahn, K.3    Bourne, H.4
  • 27
    • 78149334276 scopus 로고    scopus 로고
    • Simulating biochemical signaling networks in complex moving geometries
    • Strychalski W, Adalsteinsson D, Elston T, (2010) Simulating biochemical signaling networks in complex moving geometries. SIAM J Sci Comput 32: 3039-3070.
    • (2010) SIAM J Sci Comput , vol.32 , pp. 3039-3070
    • Strychalski, W.1    Adalsteinsson, D.2    Elston, T.3
  • 28
    • 84863393224 scopus 로고    scopus 로고
    • A computational model of cell polarization and motility coupling mechanics and biochemistry
    • Vanderlei B, Feng J, Edelstein-Keshet L, (2011) A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model Simul 9: 1420-1443.
    • (2011) Multiscale Model Simul , vol.9 , pp. 1420-1443
    • Vanderlei, B.1    Feng, J.2    Edelstein-Keshet, L.3
  • 29
    • 34547699211 scopus 로고    scopus 로고
    • Mathematical model for spatial segregation of the Rho-family GTPases based on inhibitory crosstalk
    • Jilkine A, Marée AFM, Edelstein-Keshet L, (2007) Mathematical model for spatial segregation of the Rho-family GTPases based on inhibitory crosstalk. Bull Math Biol 69: 1943-1978.
    • (2007) Bull Math Biol , vol.69 , pp. 1943-1978
    • Jilkine, A.1    Marée, A.F.M.2    Edelstein-Keshet, L.3
  • 30
    • 0038636530 scopus 로고    scopus 로고
    • The mechanics of neutrophils: synthetic modeling of three experiments
    • Herant M, Marganski W, Dembo M, (2003) The mechanics of neutrophils: synthetic modeling of three experiments. Biophys J 84: 3389-3413.
    • (2003) Biophys J , vol.84 , pp. 3389-3413
    • Herant, M.1    Marganski, W.2    Dembo, M.3
  • 31
    • 19444378366 scopus 로고    scopus 로고
    • Mechanics of neutrophil phagocytosis: behavior of the cortical tension
    • Herant M, Heinrich V, Dembo M, (2005) Mechanics of neutrophil phagocytosis: behavior of the cortical tension. J Cell Sci 118: 1789-1797.
    • (2005) J Cell Sci , vol.118 , pp. 1789-1797
    • Herant, M.1    Heinrich, V.2    Dembo, M.3
  • 32
    • 33744531652 scopus 로고    scopus 로고
    • Mechanics of neutrophil phagocytosis: experiments and qualitative models
    • Herant M, Heinrich V, Dembo M, (2006) Mechanics of neutrophil phagocytosis: experiments and qualitative models. J Cell Sci 119: 1903-1913.
    • (2006) J Cell Sci , vol.119 , pp. 1903-1913
    • Herant, M.1    Heinrich, V.2    Dembo, M.3
  • 33
    • 48049085466 scopus 로고    scopus 로고
    • A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions
    • Stéphanou A, Mylona E, Chaplain M, Tracqui P, (2008) A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions. J Theor Biol 253: 701-716.
    • (2008) J Theor Biol , vol.253 , pp. 701-716
    • Stéphanou, A.1    Mylona, E.2    Chaplain, M.3    Tracqui, P.4
  • 36
    • 43849109486 scopus 로고    scopus 로고
    • Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape
    • Zajac M, Dacanay B, Mohler W, Wolgemuth C, (2008) Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape. Biophys J 94: 3810-3823.
    • (2008) Biophys J , vol.94 , pp. 3810-3823
    • Zajac, M.1    Dacanay, B.2    Mohler, W.3    Wolgemuth, C.4
  • 37
    • 33847053253 scopus 로고    scopus 로고
    • Modulation of the reaction rate of regulating protein induces large morphological and motional change of amoebic cell
    • Nishimura S, Sasai M, (2007) Modulation of the reaction rate of regulating protein induces large morphological and motional change of amoebic cell. J Theor Biol 245: 230-237.
    • (2007) J Theor Biol , vol.245 , pp. 230-237
    • Nishimura, S.1    Sasai, M.2
  • 38
    • 0030049170 scopus 로고    scopus 로고
    • Actin-based cell motility and cell locomotion
    • Mitchison T, Cramer L, (1996) Actin-based cell motility and cell locomotion. Cell 84: 371-379.
    • (1996) Cell , vol.84 , pp. 371-379
    • Mitchison, T.1    Cramer, L.2
  • 39
    • 0033895234 scopus 로고    scopus 로고
    • Molecular mechanisms controlling actin filament dynamics in nonmuscle cells
    • Pollard T, Blanchoin L, Mullins R, (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Ann Rev Bioph Biom 29: 545-576.
    • (2000) Ann Rev Bioph Biom , vol.29 , pp. 545-576
    • Pollard, T.1    Blanchoin, L.2    Mullins, R.3
  • 40
    • 34548475260 scopus 로고    scopus 로고
    • Emergence of large-scale cell morphology and movement from local actin filament growth dynamics
    • doi:10.1371/journal.pbio.0050233
    • Lacayo C, Pincus Z, VanDuijn M, Wilson C, Fletcher D, et al. (2007) Emergence of large-scale cell morphology and movement from local actin filament growth dynamics. PLoS Biol 5: e233 doi:10.1371/journal.pbio.0050233.
    • (2007) PLoS Biol , vol.5
    • Lacayo, C.1    Pincus, Z.2    VanDuijn, M.3    Wilson, C.4    Fletcher, D.5
  • 41
    • 0842306339 scopus 로고    scopus 로고
    • A continuum model of motility in ameboid cells
    • Gracheva M, Othmer H, (2004) A continuum model of motility in ameboid cells. Bull Math Biol 66: 167-193.
    • (2004) Bull Math Biol , vol.66 , pp. 167-193
    • Gracheva, M.1    Othmer, H.2
  • 42
    • 33748933359 scopus 로고    scopus 로고
    • Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell
    • Larripa K, Mogilner A, (2006) Transport of a 1D viscoelastic actin-myosin strip of gel as a model of a crawling cell. Physica A 372: 113-123.
    • (2006) Physica A , vol.372 , pp. 113-123
    • Larripa, K.1    Mogilner, A.2
  • 43
    • 79958179254 scopus 로고    scopus 로고
    • Theoretical model for cellular shapes driven by protrusive and adhesive forces
    • doi:10.1371/journal.pcbi.1001127
    • Kabaso D, Shlomovitz R, Schloen K, Stradal T, Gov N, (2011) Theoretical model for cellular shapes driven by protrusive and adhesive forces. PLoS Comput Biol 7: e1001127 doi:10.1371/journal.pcbi.1001127.
    • (2011) PLoS Comput Biol , vol.7
    • Kabaso, D.1    Shlomovitz, R.2    Schloen, K.3    Stradal, T.4    Gov, N.5
  • 44
    • 0015454185 scopus 로고
    • A theory of biological pattern formation
    • Gierer A, Meinhardt H, (1972) A theory of biological pattern formation. Kybernetik 12: 30-39.
    • (1972) Kybernetik , vol.12 , pp. 30-39
    • Gierer, A.1    Meinhardt, H.2
  • 45
    • 0016209638 scopus 로고
    • Application of a theory of biological pattern formation based on lateral inhibition
    • Meinhardt H, Gierer A, (1974) Application of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 15: 321-346.
    • (1974) J Cell Sci , vol.15 , pp. 321-346
    • Meinhardt, H.1    Gierer, A.2
  • 46
    • 43649107536 scopus 로고    scopus 로고
    • Exploring the control circuit of cell migration by mathematical modeling
    • Satulovsky J, Lui R, Wang Y, (2008) Exploring the control circuit of cell migration by mathematical modeling. Biophys J 94: 3671-3683.
    • (2008) Biophys J , vol.94 , pp. 3671-3683
    • Satulovsky, J.1    Lui, R.2    Wang, Y.3
  • 47
    • 44749084234 scopus 로고
    • Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations
    • Osher S, Sethian JA, (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comp Phys 79: 12-49.
    • (1988) J Comp Phys , vol.79 , pp. 12-49
    • Osher, S.1    Sethian, J.A.2
  • 48
    • 77955267573 scopus 로고    scopus 로고
    • The moving boundary node method: a level set-based, finite volume algorithm with applications to cell motility
    • Wolgemuth C, Zajac M, (2010) The moving boundary node method: a level set-based, finite volume algorithm with applications to cell motility. J Comp Phys 229 (19) (): 7287-7308.
    • (2010) J Comp Phys , vol.229 , Issue.19 , pp. 7287-7308
    • Wolgemuth, C.1    Zajac, M.2
  • 49
    • 37649027519 scopus 로고    scopus 로고
    • Computational approach for modeling intra-and extracellular dynamics
    • Kockelkoren J, Levine H, Rappel W, (2003) Computational approach for modeling intra-and extracellular dynamics. Phys Rev E 68: 037702.
    • (2003) Phys Rev E , vol.68 , pp. 037702
    • Kockelkoren, J.1    Levine, H.2    Rappel, W.3
  • 50
    • 64549103448 scopus 로고    scopus 로고
    • Solving PDEs in complex geometries: a diffuse domain approach
    • Li X, Lowengrub J, Ratz A, Voigt A, (2009) Solving PDEs in complex geometries: a diffuse domain approach. Commun Math Sci 7: 81-107.
    • (2009) Commun Math Sci , vol.7 , pp. 81-107
    • Li, X.1    Lowengrub, J.2    Ratz, A.3    Voigt, A.4
  • 52
    • 77956336109 scopus 로고    scopus 로고
    • Computational model for cell morphodynamics
    • Shao D, Rappel WJ, Levine H, (2010) Computational model for cell morphodynamics. Phys Rev Lett 105: 108104.
    • (2010) Phys Rev Lett , vol.105 , pp. 108104
    • Shao, D.1    Rappel, W.J.2    Levine, H.3
  • 53
    • 0019312416 scopus 로고
    • A mechanical model for epithelial morphogenesis
    • Odell G, Oster G, Burnside B, Alberch P, (1980) A mechanical model for epithelial morphogenesis. J Math Biol 9: 291-295.
    • (1980) J Math Biol , vol.9 , pp. 291-295
    • Odell, G.1    Oster, G.2    Burnside, B.3    Alberch, P.4
  • 54
    • 0019756712 scopus 로고
    • The mechanical basis of morphogenesis: I. epithelial folding and invagination
    • Odell G, Oster G, Alberch P, Burnside B, (1981) The mechanical basis of morphogenesis: I. epithelial folding and invagination. Dev Biol 85: 446-462.
    • (1981) Dev Biol , vol.85 , pp. 446-462
    • Odell, G.1    Oster, G.2    Alberch, P.3    Burnside, B.4
  • 55
    • 0025338402 scopus 로고
    • The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly
    • Weliky M, Oster G, (1990) The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 109: 373-386.
    • (1990) Development , vol.109 , pp. 373-386
    • Weliky, M.1    Oster, G.2
  • 56
    • 0026331852 scopus 로고
    • Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension
    • Weliky M, Minsuk S, Keller R, Oster G, (1991) Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113: 1231-1244.
    • (1991) Development , vol.113 , pp. 1231-1244
    • Weliky, M.1    Minsuk, S.2    Keller, R.3    Oster, G.4
  • 57
    • 0024217710 scopus 로고
    • A continuum model of protrusion of pseudopod in leukocytes
    • Zhu C, Skalak R, (1988) A continuum model of protrusion of pseudopod in leukocytes. Biophys J 54: 1115-1137.
    • (1988) Biophys J , vol.54 , pp. 1115-1137
    • Zhu, C.1    Skalak, R.2
  • 58
    • 43649095122 scopus 로고    scopus 로고
    • Wave-pinning and cell polarity from a bistable reaction-diffusion system
    • Mori Y, Jilkine A, Edelstein-Keshet L, (2008) Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys J 94: 3684-3697.
    • (2008) Biophys J , vol.94 , pp. 3684-3697
    • Mori, Y.1    Jilkine, A.2    Edelstein-Keshet, L.3
  • 59
    • 79956227006 scopus 로고    scopus 로고
    • Multiphase flow models of biogels from crawling cells to bacterial biofilms
    • Cogan N, Guy R, (2010) Multiphase flow models of biogels from crawling cells to bacterial biofilms. HFSP J 4: 11-25.
    • (2010) HFSP J , vol.4 , pp. 11-25
    • Cogan, N.1    Guy, R.2
  • 60
    • 0022510406 scopus 로고
    • Cell motion, contractile networks, and the physics of interpenetrating reactive flow
    • Dembo M, Harlow F, (1986) Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys J 50: 109-121.
    • (1986) Biophys J , vol.50 , pp. 109-121
    • Dembo, M.1    Harlow, F.2
  • 61
    • 0031570769 scopus 로고    scopus 로고
    • On the mechanics of the first cleavage division of the sea urchin egg
    • He X, Dembo M, (1997) On the mechanics of the first cleavage division of the sea urchin egg. Exp Cell Res 233: 252-273.
    • (1997) Exp Cell Res , vol.233 , pp. 252-273
    • He, X.1    Dembo, M.2
  • 62
    • 0000079636 scopus 로고    scopus 로고
    • Cytoplasm dynamics and cell motion: two-phase flow models
    • Alt W, Dembo M, (1999) Cytoplasm dynamics and cell motion: two-phase flow models. Math Biosci 156: 207-228.
    • (1999) Math Biosci , vol.156 , pp. 207-228
    • Alt, W.1    Dembo, M.2
  • 63
    • 63249111510 scopus 로고    scopus 로고
    • Continuum model of cell adhesion and migration
    • Kuusela E, Alt W, (2009) Continuum model of cell adhesion and migration. J Math Biol 58: 135-161.
    • (2009) J Math Biol , vol.58 , pp. 135-161
    • Kuusela, E.1    Alt, W.2
  • 64
    • 83655202697 scopus 로고    scopus 로고
    • Cell motility resulting from spontaneous polymerization waves
    • Doubrovinski K, Kruse K, (2011) Cell motility resulting from spontaneous polymerization waves. Phys Rev Lett 107: 258103-258108.
    • (2011) Phys Rev Lett , vol.107 , pp. 258103-258108
    • Doubrovinski, K.1    Kruse, K.2
  • 65
    • 33751193244 scopus 로고    scopus 로고
    • Morphology matters in immune cell chemotaxis: membrane asymmetry affects amplification
    • Onsum MD, Wong K, Herzmark P, Bourne HR, Arkin AP, (2006) Morphology matters in immune cell chemotaxis: membrane asymmetry affects amplification. Phys Biol 3: 190-199.
    • (2006) Phys Biol , vol.3 , pp. 190-199
    • Onsum, M.D.1    Wong, K.2    Herzmark, P.3    Bourne, H.R.4    Arkin, A.P.5
  • 66
    • 33644524741 scopus 로고    scopus 로고
    • Cell-signalling dynamics in time and space
    • Kholodenko BN, (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7: 165-176.
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 165-176
    • Kholodenko, B.N.1
  • 67
    • 33750619877 scopus 로고    scopus 로고
    • Potential for control of signaling pathways via cell size and shape
    • Meyers J, Craig J, Odde DJ, (2006) Potential for control of signaling pathways via cell size and shape. Curr Biol 16: 1685-1693.
    • (2006) Curr Biol , vol.16 , pp. 1685-1693
    • Meyers, J.1    Craig, J.2    Odde, D.J.3
  • 68
    • 43049156015 scopus 로고    scopus 로고
    • Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks
    • Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, et al. (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133: 666-680.
    • (2008) Cell , vol.133 , pp. 666-680
    • Neves, S.R.1    Tsokas, P.2    Sarkar, A.3    Grace, E.A.4    Rangamani, P.5
  • 69
    • 84864041617 scopus 로고    scopus 로고
    • Modelling cell polarization driven by synthetic spatially graded Rac activation
    • doi:10.1371/journal.pcbi.1002366
    • Holmes W, Lin B, Levchenko A, Edelstein-Keshet L, (2012) Modelling cell polarization driven by synthetic spatially graded Rac activation. PLoS Comput Biol 8: e1002366 doi:10.1371/journal.pcbi.1002366.
    • (2012) PLoS Comput Biol , vol.8
    • Holmes, W.1    Lin, B.2    Levchenko, A.3    Edelstein-Keshet, L.4
  • 70
    • 50349095873 scopus 로고    scopus 로고
    • Quantitative analysis of G-actin transport in motile cells
    • Novak I, Slepchenko B, Mogilner A, (2008) Quantitative analysis of G-actin transport in motile cells. Biophys J 95: 1627-1638.
    • (2008) Biophys J , vol.95 , pp. 1627-1638
    • Novak, I.1    Slepchenko, B.2    Mogilner, A.3
  • 71
    • 0035478586 scopus 로고    scopus 로고
    • The virtual cell: a software environment for computational cell biology
    • Loew L, Schaff J, (2001) The virtual cell: a software environment for computational cell biology. Trends Biotech 19: 401-406.
    • (2001) Trends Biotech , vol.19 , pp. 401-406
    • Loew, L.1    Schaff, J.2
  • 72
    • 67650391440 scopus 로고    scopus 로고
    • An open model of actin dendritic nucleation
    • Ditlev J, Vacanti N, Novak I, Loew L, (2009) An open model of actin dendritic nucleation. Biophys J 96: 3529-3542.
    • (2009) Biophys J , vol.96 , pp. 3529-3542
    • Ditlev, J.1    Vacanti, N.2    Novak, I.3    Loew, L.4
  • 73
    • 78649985557 scopus 로고    scopus 로고
    • Cytopede: a three-dimensional tool for modeling cell motility on a flat surface
    • Herant M, Dembo M, (2010) Cytopede: a three-dimensional tool for modeling cell motility on a flat surface. J Comput Biol 17: 1639-1677.
    • (2010) J Comput Biol , vol.17 , pp. 1639-1677
    • Herant, M.1    Dembo, M.2
  • 76
    • 33748556828 scopus 로고    scopus 로고
    • Direct measurement of the lamellipodial protrusive force in a migrating cell
    • Prass M, Jacobson K, Mogilner A, Radmacher M, (2006) Direct measurement of the lamellipodial protrusive force in a migrating cell. J Cell Biol 174: 767-772.
    • (2006) J Cell Biol , vol.174 , pp. 767-772
    • Prass, M.1    Jacobson, K.2    Mogilner, A.3    Radmacher, M.4
  • 78
    • 34548411407 scopus 로고    scopus 로고
    • Designing synthetic vesicles that engulf nanoscopic particles
    • Smith K, Jasnow D, Balazs A, (2007) Designing synthetic vesicles that engulf nanoscopic particles. J Chem Phys 127: 084703.
    • (2007) J Chem Phys , vol.127 , pp. 084703
    • Smith, K.1    Jasnow, D.2    Balazs, A.3
  • 79
    • 53749092382 scopus 로고    scopus 로고
    • Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by Rop/Rac GTPases
    • Yalovsky S, Bloch D, Sorek N, Kost B, (2008) Regulation of membrane trafficking, cytoskeleton dynamics, and cell polarity by Rop/Rac GTPases. Plant Physiol 147: 1527-1543.
    • (2008) Plant Physiol , vol.147 , pp. 1527-1543
    • Yalovsky, S.1    Bloch, D.2    Sorek, N.3    Kost, B.4
  • 80
    • 82255175673 scopus 로고    scopus 로고
    • Polarization of par proteins by advective triggering of a pattern-forming system
    • Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM, et al. (2011) Polarization of par proteins by advective triggering of a pattern-forming system. Science 334: 1137-1141.
    • (2011) Science , vol.334 , pp. 1137-1141
    • Goehring, N.W.1    Trong, P.K.2    Bois, J.S.3    Chowdhury, D.4    Nicola, E.M.5
  • 81
    • 35448981763 scopus 로고    scopus 로고
    • Mathematical modeling of cell migration
    • Carlsson A, Sept D, (2008) Mathematical modeling of cell migration. Methods Cell Biol 84: 911-937.
    • (2008) Methods Cell Biol , vol.84 , pp. 911-937
    • Carlsson, A.1    Sept, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.